ProMinent®

Measuring, control and sensor technology

Issued by:

ProMinent GmbH Im Schuhmachergewann 5-11 69123 Heidelberg Germany Phone +49 6221 842–0 info@prominent.com www.prominent.com

Technical changes reserved.

All previous catalogues and price lists are superseded with the release of this product catalogue. You can view our general terms and conditions on our homepage.

Heidelberg, January 2018

Product Catalogue Volume 2

Measuring, Control and Sensor Technology

Precision by design

Precise sensor technology and high-performance measuring and control technology are the guarantee of process safety when metering liquid media.

We deal with it in detail in **Chapter 1!** Discover a huge range of DULCOTEST® sensors for precise recording of different parameters in real time.

The controllers in **Chapter 2** will introduce consistent quality into your process. From the simple conversion of measuring signals to controllers optimised for complex, application-specific control tasks - the optimum product for every task awaits you here!

Completely assembled measuring and control points are described in **Chapter 3**. They are designed for the measurement of potable water, cooling water and waste water. The ready-wired plug-and-play modules, with perfectly matched components, are ready for fast and easy installation.

Chapter 4 is devoted to the treatment of swimming pool water. The product range DULCODOS® Pool is available for this. These complete **panel-mounted systems** are available in different models - for private pools to public swimming pools.

Ready for you. Anytime, anywhere.

ProMinent is close to hand no matter where you are: 55 dedicated sales, production and service companies guarantee service and availability in close proximity to our customers. For many years this has meant a local presence for our customers in over 100 countries.

Our sales team will be happy to be of assistance should you have any questions about metering technology or water treatment. You will find the contact details of your local contact at www.prominent.com/en/locations.

Pump Guide

You can also find information online. The ProMinent pump selection guide is available on our website. Just enter the required pump capacity and back pressure, and the Pump Guide will show you a list of suitable metering pumps. This is the quick and easy way to track down precisely the right pump for your needs.

www.pump-guide.com

New Measuring, Control and Sensor Technology Products

P DT 0077 SW

Sensor for free chlorine CLO 1-CAN-P

Sensor for the measurement of free chlorine in clear water even when using electrolysis processes for disinfection, up to 45 °C (1 bar) or 8 bar (25 °C). For use on controllers with CAN-bus connection.

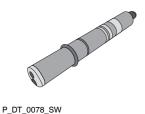
- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Use with return of the sample water to the process line
- Use at higher pressures
- Minimisation of faults by electrolysis systems in which the electrodes are immersed directly into the sample water (without diaphragm) by open sensor (no diaphragm) and gold electrodes
- Measurement of free chlorine up to pH 9

For more information see page → 1-57

Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use on controllers with CAN-bus connection.

Measured variable: free chlorine as well as free and combined bromine (bromamines)

Sensor for free and combined bromine BRE 1-CAN-P


- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

For more information see page → 1-62

pk 6 084

New Measuring, Control and Sensor Technology Products

Conductivity sensor CCT 1-mA

Sensor for the measurement of electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and factory-calibrated 4...20 mA output signal. For operation with the controllers diaLog DAC, AEGIS® II, DULCOMARIN®.

- Measured variable: electrolytic conductivity up to 20 mS/cm
- Reliable 4-20 mA output signal for the flexible connection to different measuring devices
- Integrated temperature sensor for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

For more information see page → 1-111

Controller DULCOMETER® diaLog DACb

Transparent water analysis with the DULCOMETER® diaLog DACb – all combinations of relevant water treatment sensors can be freely evaluated and all actuators controlled.

- Lower investment costs: two measuring and control channels even in the basic version, each with independent monodirectional PID controller (two bidirectional PID controllers optional)
- Flexible selection and permits simple subsequent adjustments: 14 different measured variables per channel
- Ready for the world offers 24 operating languages
- Transparency with troubleshooting: Event, calibration and measured data logger with easy-to-access SD memory card
- Ready for integration into your system by different field bus systems, like PROFIBUS®-DP, PROFINET® and Modbus RTU

For more information see page → 2-3

Measuring and control system DULCOMARIN® 3

The measuring and control system DULCOMARIN® 3 is your digital link to the technology of the future. It controls the entire range of swimming pools – from adventure pools to private pools. The system is operated using the large 7" touch display.

- Energy- and cost-efficient control of your swimming pool
- The DULCOMARIN® 3 can be accessed from every internet-compatible device
- Simple calibration of the sensors with video support
- Fast product selection and configuration of your system via web browser
- Status messages and alarm by e-mail
- View and assess the time-based course of the measured values of all pools on the built-in screen writer
- Simple, unrestricted LAN connection like in your home network
- Subsequent extendibility due to the LAN-based bus system
- Intelligent chlorine sensors: save the sensor data and are always in the optimum measuring range with auto-ranging
- Intelligent metering pumps: provide information on operating parameters, such as chemical level statuses and pump capacity, within the range of 0.7 l/h to 1,000 l/h
- Coupling to a PLC Programmable Logic Controller via PROFIBUS® DP and Modbus RTU
- View historical measured data directly on the controller: enabled by the integral screen writer with data logger via USB

For more information see page \rightarrow 2-74

weas	uring, '	Contro	and Sensor Technology	page
1	Senso	or Teck	nnology DULCOTEST®	1-1
•	1.0		ew of Sensor Technology DULCOTEST®	1-1
	1.0	1.0.1	Selection Guide	1-1
	1.1		Technology DULCOTEST® Measuring Principles	1-5
		1.1.1	Three Measurement Priciples for Reliable Water Treatment	
		1.1.2	Potentiometry - Measures an Electrode's Potential in	
			a Sample Solution	1-5
		1.1.3	Amperometry - A Current Measurement Used to Determine)
			the Concentration of Predetermined Dissolved Solids	1-6
		1.1.4	in Aqueous Solutions Advantages of DULCOTEST® Amperometric Sensors	1-0
		1.1.4	at a Glance	1-7
		1.1.5	Conductometry – The Measurement of Electrolytic Conductivity	1-8
	1.2	nH ∩B	P, Fluoride and Temperature Sensors DULCOTEST®	1-9
	1.2	1.2.1	pH Sensors With SN6 or Vario Pin Plug-In Head	1-11
		1.2.2	pH Sensors with Fixed Cable	1-29
		1.2.3	ORP Sensors with SN6 Plug-in Head	1-34
		1.2.4	ORP Sensors with Fixed Cable	1-44
		1.2.5	DULCOTEST® Fluoride Sensors	1-46
		1.2.6	DULCOTEST® Temperature Sensors	1-47
	1.3	_	ometric Sensors DULCOTEST®	1-48
		1.3.1	Amperometric Sensors for Chlorine, Bromine,	
			Chlorine Dioxide, Chlorite, Ozone, Dissolved Oxygen,	
			Peracetic Acid and Hydrogen Peroxide	1-48
		1.3.2	Sensors for Chlorine	1-50
		1.3.3	DULCOTEST® Sensors for Free Chlorine	1-52
		1.3.4	DULCOTEST® Sensors for Total Available Chlorine	1-65
		1.3.5	DULCOTEST® Sensors for Total Chlorine	1-67
		1.3.6 1.3.7	DULCOTEST® Sensors for Bromine DULCOTEST® Sensors for Chlorine Dioxide	1-70
		1.3.7	DULCOTEST® Sensors for Chlorite	1-75
		1.3.9	DULCOTEST® Sensors for Ozone	1-79 1-81
		1.3.10	DULCOTEST® Sensors for Dissolved Oxygen	1-83
		1.3.11	DULCOTEST® Sensors for Peracetic Acid	1-86
		1.3.12	DULCOTEST® Sensors for Hydrogen Peroxide	1-87
	1.4	-	DTEST® Conductivity Sensors	1-90
		1.4.1	Conductivity Sensors	1-90
		1.4.2	2-Electrode Conductivity Sensors	1-93
		1.4.3	Inductive Conductivity Sensors	1-114
	1.5	Turbidit	ty Measuring Points DULCOTEST®	1-120
		1.5.1	Turbidity Measuring Point DULCOTEST® DULCO® turb C	1-120
	1.6	Access	ories Sensor Technology	1-122
		1.6.1	Sensor Accessories	1-122
		1.6.2	Consumable Items for Sensors	1-125
		1.6.3	Bypass Fittings for Sensors	1-128
		1.6.4	Immersion Fittings for Sensors	1-132
		1.6.5	Installation Fittings / Adapters	1-136
	1.7	Applica	tion Examples	1-140
2	Meas	uring a	and Control Technology	2-1
	2.0	Measur	ring and Control Units DULCOMETER®	2-1
		2.0.1	Measuring and Control Units DULCOMETER®	2-1
	2.1	Control	ler DULCOMETER® diaLog DACb	2-3
		2.1.1	Controller DULCOMETER® diaLog DACb	2-3
		2.1.2	Identity Code Ordering System for diaLog DACb,	_
		0.4.0	Wall Mounting IP 67	2-7
		2.1.3	Retrospective function extension for the diaLog DACb measuring and control system	2-8
		2.1.4	DACb application and ordering examples	2-9
		2.1.5	Application Examples, Treatment of Swimming Pool Water	
		2.1.6	Application Examples, Potable Water Monitoring	2-10
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

leasuring,	Contro	ol and Sensor Technology	page
	2.1.7	Application Examples, Waste Water Monitoring	2-15
	2.1.8	Application Examples in the Food Industry	2-17
	2.1.9	Odour Reduction Application Examples (Clarification Plants)	
2.2		ller DULCOMETER® D1Cb/D1Cc	2-19
2.2	2.2.1	Controller DULCOMETER® D1Cb/D1Cc	2-19
	2.2.2	Identity Code Ordering System DULCOMETER® D1Cb,	2 10
	2.2.2	Wall Mounting	2-21
	2.2.3	Identity Code Ordering System DULCOMETER® D1Cc,	
		Control Panel Mounting	2-22
	2.2.4	D1Ub Identity Code Ordering System,	
		Subsequent Function Upgrade for D1Cb	2-24
	2.2.5	D1Uc Identity Code Ordering System, Subsequent Function Upgrade for D1Cc	2-25
	2.2.6	D1Cb and D1Cc Application and Ordering Examples	2-23
	2.2.7	Application Examples, Treatment of Swimming Pool Water	2-27
	2.2.8	Application Examples, Potable Water Monitoring	2-29
	2.2.9	Application Examples, Waste Water Monitoring	2-31
	2.2.10	Application Examples in the Food Industry	2-32
2.3		ller DULCOMETER® Compact	2-33
	2.3.1	Controller DULCOMETER® Compact	2-33
	2.3.2	Identity Code Ordering System DULCOMETER® Compact,	
		Wall Mounting IP 67	2-35
	2.3.3	Application and Ordering Examples for the	
		DULCOMETER® Compact	2-36
	2.3.4	Application Examples, Treatment of Swimming Pool Water	2-36
	2.3.5	Application Examples, Potable Water Monitoring	2-38
	2.3.6	Application Examples, Waste Water Monitoring	2-39
2.4		hannel Multi-Parameter Measuring and Control System DMARIN® II	2-40
	2.4.1	Measuring and control system DULCOMARIN® 3	2-40
	2.4.1	Measuring and control system DULCOMARIN® 3	2-40
	2.4.2	Identity Code Ordering System DULCOMARIN® II	2-43
	2.4.4	Multi-Channel Multi-Parameter Measuring and Control	2-41
	2.7.7	System DULCOMARIN® II	2-49
	2.4.5	Central Unit	2-51
	2.4.6	Combination Module	2-52
	2.4.7	DULCOMARIN® 3 functional module (F-module)	2-53
	2.4.8	Identity Code Ordering System Multi-Channel	
		Multi-Parameter Measuring and Control System	0.54
	0.4.0	DULCOMARIN® II (Central Unit and Combination Module)	2-54
	2.4.9 2.4.10	Measuring Module (M module) Current Input Module (I module)	2-56
	2.4.10	Control Module (A module)	2-58 2-59
	2.4.11	Power Supply Module (N module)	2-60
	2.4.12	Control Module for Chlorine Gas Metering Devices	2-00
	2.4.10	(R module)	2-61
	2.4.14	Limit Value and Alarm Module (G module)	2-62
	2.4.15	Identity Code Ordering System for CANopen Modules	2-63
	2.4.16	Spare Parts and Upgrade Sets	2-64
	2.4.17	Retrofit Kits for DULCOMARIN® II DXC	2-65
	2.4.18	Diaphragm Metering Pumps with CANopen Bus Interface	2-66
	2.4.19	Solenoid-Driven Metering Pumps Beta®	2-67
	2.4.20	Multi-Channel Measuring and Control System	
		DULCOMARIN® II, Module Combinations	2-70
	2.4.21	Configuration Example 1	2-71
	2.4.22	Configuration Example:	0.70
	0 4 00	2-Pool System	2-73
	2.4.23	Accessories for the DULCOMARIN® measuring and control system	2-75
2.5	DUI CC	DMARIN® 3 multi-channel multi-parameter measuring	_ , 5
0	and cor	ntrol system for water treatment	2-79
	2.5.1	Measuring and control system DULCOMARIN® 3	2-79
	2.5.2	Measuring and control system DULCOMARIN® 3	2-81
	2.5.3	Identity code ordering system for DULCOMARIN® 3	2-84

Meas	uring,	Contro	l and Sensor Technology	page
		2.5.4	Chlorine sensors for DULCOMARIN® II and 3	2-85
	2.6	Controll	er AEGIS II	2-86
		2.6.1	Controller AEGIS II	2-86
		2.6.2	Identity code ordering system for AEGIS II cooling	0.00
	2.7	Controll	tower control er with Integral Metering Pump	2-88 2-90
	2.7	2.7.1	Controller with Integral Metering Pump	2-90
	2.8		METER® Transmitters	2-91
		2.8.1	Transmitter DULCOMETER® DMTa	2-91
		2.8.2	Identity Code Ordering System for Transmitter DMTa	2-93
		2.8.3	Application Example: Measurement of Free Chlorine with Connection to a PLC	2-94
		2.8.4	Transmitter DULCOMETER® DULCOPAC	2-95
		2.8.5	Application Examples for DULCOPAC	2-97
	2.9	Measuri	ing and Test Systems	2-98
		2.9.1 2.9.2	Portable Meter Portamess® – Measured Variable pH/ORP Portable Meter Portamess® – Measured Variable	2-98
		0.00	Conductivity	2-99
	0.40	2.9.3	Photometer	2-101
	2.10	2.10.1	ories for Measuring and Control Devices Transmitter 4 20 mA (Two-Wire System)	2-104 2-104
		2.10.1	• • • • • • • • • • • • • • • • • • • •	2-104
3	Pane		ted Measuring/Control Stations	3-1
3	3.0		w of Ordering System for Measuring and Control Points	5 -1
		DULCO	TROL® DWČa	3-1
		3.0.1	Selection Guide	3-1
	0.4	3.0.2	Description of the Identity Code Specifications in the DULCOTROL® DWCa Ordering System	3-1
	3.1		ing and Control Points DULCOTROL® P Potable Water/F&B	3-3
		3.1.1	Overview of DULCOTROL® DWCa_Potable Water/F&B	3-3
		3.1.2	Permissible measured variable combinations for DULCOTROL® DWCa_P Potable water/F&B	3-4
		3.1.3	Identity Code Ordering System for DULCOTROL® DWCa_P Potable Water/F&B	3-5
		3.1.4	Examples of DULCOTROL® DWCa_P Potable Water/F&B	3-7
	3.2		ing and Control Points DULCOTROL® DWCa_W Waste Wat	
		3.2.1 3.2.2	Overview of DULCOTROL® DWCa_W Waste Water Permissible measured variable combinations for	3-9
		0.00	DULCOTROL® DWCa_W Waste water	3-10
		3.2.3	Identity Code Ordering System for DULCOTROL® DWCa W Waste Water	3-11
		3.2.4	Examples of DULCOTROL® DWCa_W Waste Water	3-13
	3.3	Technic	al Description of the Scope of Delivery of Measuring and Points DULCOTROL® DWCa	3-15
		3.3.1	Technical Description of Controllers	3-15
		3.3.2	Technical Description of Sensors	3-16
		3.3.3	Technical Description of Sensor Fittings	3-18
		3.3.4	Technical Description of the Hydraulic Connector/Pipework	3-19
		3.3.5	Technical Description of Optional Accessories	3-20
4			Control and Metering Systems for Swimming Treatment	4-1
	4.0	Measuri	ing Control and Metering Systems for Swimming Pool Water	
		Treatme		4-1
	4 1	4.0.1	DULCODOS® Pool Swimming Pool Metering Systems	4-1
	4.1	Metering 4.1.1	g System DULCODOS® Pool Soft Metering System DULCODOS® Pool Soft	4-3 4-3
	4.2		g System DULCODOS® Pool Basic	4-3 4-5
	1.2	4.2.1	Metering System DULCODOS® Pool Basic	4-5
	4.3		g System DULCODOS® Pool Comfort	4-7
		4.3.1	Metering System DULCODOS® Pool Comfort	4-7

M	easuring	, Contr	ol and Sensor Technology	page
	4.4	Meterir	ng System DULCODOS® Pool Professional	4-9
		4.4.1	Metering System DULCODOS® Pool Professional	4-9
	4.5		nance Kits	4-13
		4.5.1	Maintenance Kits for Metering Pumps	4-13
		4.5.2	Maintenance Kits for Measured Variables	4-13
		4.5.3	Buffer Solutions	4-13
	4.6	Test E	quipment	4-14
		4.6.1	Portable Meter Portamess® – Measured Variable pH/ORP	4-14
		4.6.2	Photometer	4-15
5	ProN	linent®	Chemical Resistance List	

Sensor Technology DULCOTEST®

1.0 Overview of Sensor Technology DULCOTEST®

1.0.1	Selection Gui	de	
	Selection Guid	e for pH Sensors	DULCOTEST®
Medium	Temperature / pressure	Sensor type	Typical application
-1	max. 100 °C / 3 bar	DUED II	Ob a marked to make a second
clear, pH 3 – 14	max. 25 °C / 6 bar	PHEP-H	Chemical processes
	max. 25 C/6 par		
	max. 80 °C / no overpressure	PHEN	Chemically contaminated water, low-conductivity water $\geq 50~\mu\text{S/cm}$
	00 °O / O h	DUEO	Outlined to a section of the section
	max. 60 °C / 3 bar	PHES	Swimming pool water, potable water, glass stem
Clear, pH 2 – 12		PHEK	Swimming pool, aquarium, plastic shaft
	max. 80 °C / 6 bar	PHEP/PHEPT	Process water
	max. 80 °C / 8 bar	PHED	Chemically contaminated water, e.g. Cr ⁶⁺ , CN ⁻
			, community of the second of t
Solid residues, turbidity	max. 80 °C / 6 bar	PHER/PHEI	Cooling water, waste water
Solid matter, non- translucent	max. 100 °C / 16 bar	PHEX	Suspensions, sludge, emulsions
Clear to turbid, containing fluoride, pH 0 - 7	max. 50 °C / 7 bar	PHEF	Exhaust air scrubber, semiconductor industry, electroplating

DULCOTEST® ORP sensor selection guide

Medium	Temperature / pressure	Sensor type	Typical application
	max. 80 °C / no overpressure	RHEN	Chemically contaminated water, low-conductivity water $\geq 50~\mu\text{S/cm}$
	max. 60 °C / 3 bar	RHES	Swimming pool water, potable water, glass stem
0, 1,0 40		DUEL	
Clear, pH 2 – 12		RHEK	Swimming pool, aquarium, plastic shaft
	00 00 / 0 h	DUED DI	D
	max. 80 °C / 6 bar	RHEP-Pt	Process water
		RHEP-Au	
		NIIEF-AU	Chemically contaminated water, e.g. CN-, ozone
			treatment
Solid residues, turbidity	max. 80 °C / 6 bar	RHER	Cooling water, waste water
Solid matter, non- translucent	max. 100 °C / 16 bar	RHEX	Suspensions, sludge, emulsions

Note: All DULCOTEST® pH and ORP sensors are made using lead-free glass (RoHS-compliant)

Sensor Technology DULCOTEST®

1.0 Overview of Sensor Technology DULCOTEST®

Selection guide for DULCOTEST® amperometric sensors

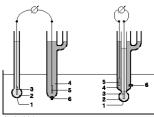
Measured variable	Applications	Graduated measuring range	Connection to DULCOMETER®	Sensor type	See page
Free chlorine	Potable water, swimming pools	0.01–100 mg/l	D1C, DAC	CLE 3-mA-xppm, CLE 3.1-mA-xppm	→ 1-51
Free chlorine	Process and waste water	10 - 200 mg/l	D1C, DAC	CLR 1-mA	→ 1-63
Free chlorine	Potable water, swimming pool water	0.01 - 10 mg/l	DULCOMARIN®	CLE 3-CAN-xppm, CLE 3.1-CAN-xppm	→ 1-54
Free chlorine	Potable water, swimming pool water, in situ electrolysis (without diaphragm)	0.02-10 mg/l	D1C, DAC	CLO 2-mA-2ppm	→ 1-56
Free chlorine	Swimming pools, uncontaminated potable water and process water, and can also be used together with diaphragm-free electrolysis processes.	0.01-10 mg/l	DULCOMARIN®	CLO 2-mA-2ppm	→ 1-57
Free chlorine	Hot water up to 70 °C (legionella), in situ electrolysis (without diaphragm)	0.02-2 mg/l	D1C, DAC	CLO 2-mA-2ppm	→ 1-58
Free chlorine	Potable water, swimming pools	0.01–50 mg/l	DMT	CLE 3-DMT-xppm	→ 1-53
Free chlorine	Potable water, swimming pools	0.05-5 mg/l	COMPACT	CLB 2-μA-xppm	→ 1-59
Free chlorine	Potable water, swimming pool water	0.05-5 mg/l	COMPACT	CLB 3-µA-xppm	→ 1-60
Free chlorine	Cooling, industrial and waste water, water with higher pH values (stable); seawater (free chlorine exists as bromine)	0.01-10 mg/l	D1C, DAC	CBR 1-mA-xppm	→ 1-61
Total available chlorine	Swimming pool water with chlorine-organic disinfectants	0.02–10 mg/l	D1C, DAC	CGE 3-mA-xppm	→ 1-64
Total available chlorine	Swimming pool water with organic chlorine disinfectants, in situ electrolysis (without diaphragm)	0.02 - 10 mg/l	D1C, DAC	CGE 3-mA	→ 1-64
Total available chlorine	Swimming pool water with chlorine-organic disinfectants	0.01–10 mg/l	DULCOMARIN®	CGE 3-CAN-P-xppm	→ 1-65
Total chlorine	Potable, industrial, process and waste water	0.01-10 mg/l	D1C, DAC	CTE 1-mA-xppm	→ 1-66
Total chlorine	Potable, industrial, process and waste water	0.01–10 mg/l	DMT	CTE 1-DMT-xppm	→ 1-67
Total chlorine	Potable, industrial, process and waste water	0.01-10 mg/l	DULCOMARIN®	CTE 1-CAN-P-xppm	→ 1-68
Combined chlorine	Swimming pool water	0.02–2 mg/l	DAC	CTE 1-mA-2 ppm + CLE 3.1-mA-2 ppm	→ 1-68
Combined chlorine	Swimming pool water	0.01–10 mg/l	DULCOMARIN®	CTE 1-CAN-P-xppm + CLE 3.1-CAN-xppm	→ 1-68
Total available bromine	Cooling water, waste water, swimming pool water, whirlpool water, bromine with BCDMH	0.01-10 mg/l	D1C, DAC	BCR 1-mA (replaces earlier type BRE 1)	→ 1-70
Total available bromine	Cooling water, swimming pool water, whirlpool water with organic or inorganic bromine compounds	0.02-10 mg/l	DULCOMARIN®	BRE 3-CAN-10 ppm	→ 1-71
Free and bound bromine	Cooling, industrial, waste water, water with higher pH values (stable); seawater	0.02-20 mg/l	D1C, DAC	CBR 1-mA-xppm	→ 1-61
Free + combined bromine	Cooling, industrial, waste water, water with higher pH values (stable); sea water	0.00-0 mg/l	D1C, DAC	CBR 1-mA-xppm	→ 1-62
Chlorine dioxide	Potable water	0.01–10 mg/l	D1C, DAC	CDE 2-mA-xppm	→ 1-74
Chlorine dioxide	Bottle washer systems	0.02-2 mg/l	D1C, DAC	CDP 1-mA	→ 1-75
Chlorine dioxide	Hot water up to 60 °C, cooling water, waste water, irrigation water	0.01-10 mg/l	D1C, DAC, DULCOMARIN®	CDR 1-mA-xppm, CDR 1-CAN-xppm	→ 1-76
Chlorite	Potable, wash water	0.02–2 mg/l	D1C, DAC, DULCOMARIN®	CLT 1-mA-xppm, CLT 1-CAN-xppm	→ 1-78
Ozone	Potable water, swimming pool water	0.02-2 mg/l	D1C, DAC	OZE 3-mA	→ 1-80
Ozone	Process, service or cooling water	0.02-2 mg/l	D1C, DAC	OZR 1-mA-2 ppm*	→ 1-81
Dissolved oxygen	Potable, surface water	2–20 mg/l	D1C, DAC	DO 1-mA-xppm	→ 1-82
Dissolved oxygen	plants	0.1–10 mg/l	D1C, DAC	DO 2-mA-xppm	→ 1-83
Peracetic acid	CIP, antiseptic food filling process	1–2,000 mg/l	D1C, DAC	PAA 1-mA-xppm	→ 1-84
Hydrogen peroxide	Clear water, fast control	1–2,000 mg/l	DAC	PEROX sensor PEROX-H2.10 P	→ 1-86
Hydrogen peroxide	Process, swimming pool water	2–20.000 mg/l	D1C, DAC	PER1-mA-xppm	→ 1-86

1.0 Overview of Sensor Technology DULCOTEST®

Conductivity sensor selection guide

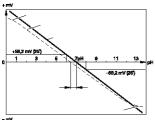
Conductivity > 20 mS/cm or residue-forming medium or chemically aggressive medium? yes ↓ no Inductive conductivity measurement conductive conductivity measurement 1 Do the following conditions exist? Further selection according to summary table: chemically corrosive medium or Measuring range Temperatures > 70 °C or **Temperature** . Measured value < 200 μ S/cm or > 1000 mS/cm **Process matching Electrical connection** yes ↓ no Series ICT 2 **Series ICT1** Product ranges LF, LMP, CK Successor ICT5 Installation in the process line: with stainless steel flange accessory For immersion with accessory: Immersion fitting IMA - ICT 2 Installation in the process line? yes **↓** no Type ICT 1 Type ICT 1-IMA Successor ICT5 Successor ICT5 for installation in for immersion a pipe

1.1 Sensor Technology DULCOTEST® Measuring Principles


1.1.1

Three Measurement Priciples for Reliable Water Treatment

- Potentiometry is used to determine: pH value, ORP and fluoride concentration
- Amperometry is used to determine: chlorine, bromine, chlorine dioxide, ozone, hydrogen peroxide, peracetic acid
- Conductometry is used to determine electrolytic conductivity


1.1.2

Potentiometry - Measures an Electrode's Potential in a Sample Solution

pk_6_001

- Glass membrane
- 2 Internal pH buffer
- Internal derivation
- Electrolyte
- 5 External derivation
- 6 Diaphragms

pk_6_002

- 1 Acid error
 2 Exponential (in practice
- 2 Exponential (in practice)3 Theoretical (nominal slope)
- Zero point deviation (asymmetrical potential)
- 5 Alkali error
- 6 Voltage of probe

As the measurement of the potential of a sensor (half chain) is not possible, a measuring chain is used that comprises two half chains. Their potential difference can be measured using a very high resistance voltmeter, i.e. nearly without any current.

A measuring chain always comprises:

A measuring electrode, which reacts as specifically as possible to concentration changes for a particular reactant and a reference electrode (reference), which supplies, as constantly as possible, a voltage that is dependent on the concentration of the reactant.

An example of a measuring system, such as this, is the pH measuring sensor, designed as a two-rod sensor or single rod sensor (Fig. pk_6_001).

pH - is equal to the negative logarithm of the hydrogen ion activity

As hydrogen ion concentrations occur in a wide range of less than 10⁻¹⁴ g/l up to more than 10 g/l (or mol/l) in aqueous solutions and the exponential nomenclature is unwieldy, the pH scale is defined as:

$pH = -log a_H +$

For concentrations that are not too high, activity and concentration can be set equally.

Then a concentration of 10^{-14} corresponds to a pH value of 14 and a concentration of $10^0 = 1$ corresponds to a pH value of 0.

pH value 7 is identified as neutral. This means that the effective concentrations of H $^+$ and OH $^-$ ions here, which originate from the dissociation of water (H $_2$ O -> H $^+$ + OH $^-$), are the same size.

If the hydrogen ions are in a majority due to the addition of acid (e.g. HCl) then the pH values are less than 7. If a base (alkali) is added (e.g. NaOH) then the values are greater than 7 and the solution becomes alkaline.

Each change in the pH value by 1 corresponds to a factor of 10 concentration change and results from the logarithmic relationship.

Fig. pk_6_002 shows the theoretical voltage curve for pH glass electrodes. In practice glass electrodes exhibit a greater or lesser deviation from the theoretical curve.

The electrode system generally exhibits a zero-point deviation (asymmetry potential), which is smaller than \pm 0.5 pH, however. The electrode slope (mV/pH) may also deviate from the theoretical value U_N (59.2 mV/pH at 25 °C), which is particularly the case for used glass electrodes.

Other deviations occur at very low pH values, the so-called acid error, while at high pH values allowance must be made for the so-called alkali error (or Na error).

pH measuring amplifiers must be matched to the respective measuring chain by means of zero point and slope calibration

Here the zero point is calibrated using a buffer solution, the value of which is about pH 7 while the slope is calibrated using a buffer in an acidic or alkaline range that has a pH value 2 or 3 above or below the neutral point.

With pH measurements that differ from pH 7, the fluctuating temperature of the measuring medium may result in a need for temperature compensation.

In this respect three questions must be answered:

- 1 What pH value is to be measured?
- 2 How large are the temperature deviations?
- 3 How accurate must the measurements be? Example of the influence of temperature without compensation:

At pH 10, an incorrect indication of approximately + 0.1 pH occurs for a temperature increase of about 10 °C. This effect is greater the greater the pH value differs from pH 7.

1.1 Sensor Technology DULCOTEST® Measuring Principles

Measurement of the redox voltage is also a potentiometric measurement

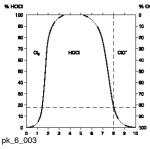
The term "redox" (or ORP - oxidation/reduction potential) stands for the reduction and oxidation that occur alongside each other in aqueous solutions. In general, oxidation involves the removal of electrodes with an oxidising agent acting as an electron acceptor. Reduction is the opposite with electrodes being taken up, with the reducing agent acting as an electron donor.

The redox voltage is measured with a precious metal electrode, generally platinum. In an oxidising agent containing liquid (e.g. chlorine) there is a positive redox voltage, in a reducing agent (e.g. sodium bisulphite) a negative redox voltage.

The level of the redox voltage gives an indication of how strongly oxidising or reducing a solution is. Where disinfection is concerned, the redox voltage gives an indication of how great the germicidal effect of, for example, chlorine or ozone is.

Consequently the redox voltage can be considered as a hygiene parameter in water treatment.

It should be noted that the redox voltage varies with the pH value so that qualitative conclusions need to be made at a constant pH value.


Examples of typical applications for redox measurements

- Cyanide detoxification at a high pH value by oxidation using gold electrodes.
- Chromate detoxification at a low pH value by oxidation using platinum electrodes.
- Monitoring of the disinfection effect during oxidising agent metering (chlorine/bromine) using platinum electrodes.

1.1.3

Amperometry - A Current Measurement Used to Determine the Concentration of Predetermined Dissolved Solids in Aqueous Solutions

dioxide, chlorite, ozone, hydrogen peroxide, peracetic acid and dissolved oxygen possible.

Disassociation curve of hypochlorous acid (HOCI)

This type of current measurement concentrates on the nA (10⁻⁹ A) or μA (10⁻⁶ A) range. Open or diaphragm-covered 2 or 3-probe sensors are used with operating measurements in this range. The amperometric sensor product range makes determining the concentration of chlorine, bromine, chlorine

Our amperometric DULCOTEST® sensors represent proven diaphragm-covered 2-probe sensors.

By separation of the electrode chamber from the measurement medium using a special diaphragm, clear metrological conditions are created and disturbing influences excluded.

ProMinent DULCOTEST® 2-probe sensors use gold or platinum as the working electrode (cathode). The counter electrode (anode) is silver with a special coating.

In contrast to open, fault-prone sensors, membrane-covered sensors exhibit hardly any flow dependency above a minimum flow (approx. 30 l/h). Consequently there is no need for costly measures to maintain the flow at a constant rate.

The pH value has a decisive influence on the chlorine measurement

It is important to know, in what forms chlorine is present in aqueous solutions. It is only at a very low pH value that chlorine occurs as dissolved chlorine gas Cl_2 in water and above a pH of about 3 as hypochlorous acid HOCI, which upon the further increase in the pH value dissociates into hypochlorite (see Fig. pk_6_003).

Compared with hypochlorous acid, hypochlorite is about 100 times less powerful as a disinfectant. Therefore it makes no sense to measure it with the chlorine sensor. Yet both hypochlorous acid and hypochlorite are considered to be "free chlorine" and, as such, are also measured by the DPD 1 measuring method, generally used as a comparison measurement.

A corresponding example:

At pH 8 (see Fig. pk_6_003), only some 20% is in the effective HOCl form, while 80% is in the nearly ineffective form OCL⁻. However, it is possible to set this up using a sensitivity (slope) comparison to obtain a value corresponding to the DPD comparison measurement on the measuring device display.

The pH value needs to be kept constant for a useful measurement. If not, a new slope calibration must be carried out. The maximum permissible pH value is pH 8.0 for the sensors for inorganic chlorine and pH 9.5 for organic chlorine.

1.1 Sensor Technology DULCOTEST® Measuring Principles

The influence of temperature on chlorine measurement is not insignificant. Therefore automatic temperature compensation occurs in DULCOTEST® chlorine sensors

While there are no problems with chlorine measurements involving inorganic chlorine (chlorine gas CI₂, sodium-calcium hypochlorite NaOCI or calcium hypochlorite Ca(OCI)₂) provided the pH value remains constant, if organic chlorine additives are used (isocyanuric acid) then difficulties may occur which can be easily overcome using the organic chlorine cell (CGE).

If organic chlorine stabilisers are added, then not only does hypochlorous acid form, but also chlorine bound to isocyanuric acid. Both species are detected by the organic chlorine sensor (CGE).

If a measurement is made using the DPD 1 method, organic chlorine is also measured, in the same way as the practically ineffective hypochlorite (at high pH values). In this case, the DPD measurement can falsify hygienic safety, which is not in fact the case.

Typical applications for DULCOTEST® chlorine sensors include swimming pool water (also sea water), potable water and process water

The chlorine measurement can be disrupted by bromine, iodine, ozone and chlorine dioxide. Not however by dissolved oxygen. The presence of surfactants will block the working of the diaphragms of the sensor for free chlorine, type CLE. The sensor cannot then be used, by contrast, however, the CTE type combined chlorine sensor can be used in applications such as this.

A cell that functions according to the same principle as for the inorganic chlorine measurement is used to measure chlorine dioxide. The chlorine dioxide measurement is independent of the pH value. Its temperature dependency is compensated. Dissolved oxygen and chlorite do not interfere with the measurement results. The presence of surfactants causes problems with CDE type sensors. By contrast, the CDP type can also be used in media containing surfactants.

In addition amperometric sensors can also be used for the measurement of bromine and ozone dissolved in water.

1.1.4 Adva

Advantages of DULCOTEST® Amperometric Sensors at a Glance

Simple to use

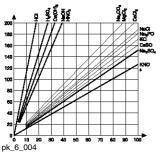
- No zero point calibration necessary
- Sample liquid need not be de-chlorinated with active carbon filter
- Installation and calibration is very quick

Reliable measurement in real-time

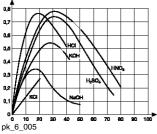
- No cross-sensitivity because of turbidity and colouration
- The DULCOTEST® chlorine measurement can also be used in sea water and brine baths
- The measured value is largely unaffected by the flow rate
- Online measurement

Minimum maintenance

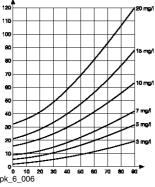
- Maintenance is limited to the 6-12 month replacement of the membrane cap and electrolyte
- Long-term operating costs are therefore low



Sensor Technology DULCOTEST®


Sensor Technology DULCOTEST® Measuring **Principles**

1.1.5


Conductometry - The Measurement of Electrolytic Conductivity

Dependence of electrolytic conductivity on the concentration of dissolved acids, all and salt solutions

Dependence of specific conductivity on the concentration in percentage weight of concentrated acids, alkalis and salt solutions

Conductivity of aqueous solutions of NaCl depending on the temperature of different concentrations

In contrast to metallic conductivity where the electric charge is carried by electrons, in electrolytic conductivity, ions are responsible for carrying the charge, that is positively or negatively charged atoms or groups of atoms which are primarily created by dissolving in or dissociation in aqueous solutions. Conductivity sensors are differentiated according to the following criteria:

The cell constant as a distinguishing feature

An arrangement in which the conductivity of an electrolyte would be measured in a tube of length I = 1 cm and cross section q = 1 cm² has a cell constant of k = 1 cm⁻¹. If the length I = 10 cm (or if the cross section q = 0.1 cm²), then the cell constant would be k = 10 cm⁻¹. By contrast, if the cross section was increased to $q = 10 \text{ cm}^2$ (or I reduced to 0.1 cm), then a cell constant of $k = 0.1 \text{ cm}^{-1}$ is obtained. It can easily be seen that a conductivity sensor with a smaller cell constant is used for measurements of lower conductivity while a cell with a larger cell constant is used for higher conductivities. This is done to increase the measurement sensitivity at lower conductivities (e.g. k = 0.1 cm⁻¹) - or to reduce it at higher conductivities (e. g. $k = 10 \text{ cm}^{-1}$).

Sensor materials

The selection of the correct cell constant is just as important as selection of a suitable electrode material. Stainless steel has shown its suitability in the lower range, up to approximately 500 µS/cm. By contrast in the upper range, where, because of the occurrence of polarisation effects, stainless steel is less suitable, special graphite is primarily used. As errors due to polarisation effects have to be avoided during electrolytic conductivity measurements, measurements can only be carried out using AC voltage. At low conductivities, frequencies of about 50 Hz are favoured and in the higher range up to approximately 5 kHz. Both at very low and also very high conductivities, long measuring lines can result in incorrect results, in the lower range caused by line capacities and in the upper range by line resistance. Therefore the distance between the sensor and measurement amplifier should be kept as

Every conductivity measurement is temperature-dependent

Different dissolved substances mostly have different temperature coefficients a (alpha), leading to a particular temperature curve that can change depending on the concentration and temperature. (Fig. pk_6_006)

As, in general, conductivity measurements are used because we want to draw conclusions about substance concentrations, temperature compensation is used for exact measurements, even with a measured value compensated to an international standard reference temperature of 25 °C. Suitable transducers for temperature compensation are NTC or Pt 100 temperature sensors with the Pt 100 being significantly superior because of its linearity and hence accuracy.

Inductive conductivity measurement

While errors can occur due to polarisation effects and deposits on the electrode surfaces, with open conductivity measurements, errors can be avoided using inductive conductivity measurement where no electrodes are used. Regular cleaning is therefore not necessary and measuring reliability is significantly

The following generally applicable points should be noted for optimum functioning of pH and ORP sensors:

- The sensors should never dry out
- The insertion angle must be > 15 ° from the horizontal (except with PHEK-L)
- Maximum flow < 0.8 m/s
- Use of suitable measuring lines
- Measuring lines should be as short as possible
- Use of suitable measuring devices/transducers (high resistance input)
- Calibration using quality buffer solutions
- Selection of electrode type according to the application
- The storage duration should be as short as possible

Signal leads for pH/ORP measurement see page → 1-119, pH quality buffer solutions see page → 1-122

pH sensor selection guide

Medium	Temperature / pressure	Sensor type	Typical application
	max. 100 °C / 3 bar		
clear, pH 3 - 14		PHEP-H	Chemical processes
	max. 25 °C / 6 bar		
	max. 80 °C / no overpressure	PHEN	Chemically contaminated water, low-conductivity water $\geq 50~\mu\text{S/cm}$
	max. 60 °C / 3 bar	PHES	Swimming pool water, potable water, glass stem
Clear, pH 2 – 12		PHEK	Swimming pool, aquarium, plastic shaft
	max. 80 °C / 6 bar	PHEP/PHEPT	Process water
	max. 80 °C / 8 bar	PHED	Chemically contaminated water, e.g. Cr ⁶⁺ , CN ⁻
Solid residues, turbidity	max. 80 °C / 6 bar	PHER/PHEI	Cooling water, waste water
Solid matter, non- translucent	max. 100 °C / 16 bar	PHEX	Suspensions, sludge, emulsions
Clear to turbid, containing fluoride, pH 0 - 7	max. 50 °C / 7 bar	PHEF	Exhaust air scrubber, semiconductor industry, electroplating

Note: All DULCOTEST® pH and ORP sensors are made using lead-free glass (RoHS-compliant)

DULCOTEST® ORP sensor selection guide

Medium	Temperature / pressure	Sensor type	Typical application
	max. 80 °C / no overpressure	RHEN	Chemically contaminated water, low-conductivity water $\geq 50~\mu\text{S/cm}$
	max. 60 °C / 3 bar	RHES	Swimming pool water, potable water, glass stem
Clear, pH 2 – 12		RHEK	Swimming pool, aquarium, plastic shaft
01001, p112 12		THILL	Ownining poor, aquarium, plaono onare
	max. 80 °C / 6 bar	RHEP-Pt	Process water
		RHEP-Au	Chemically contaminated water, e.g. CN-, ozone
			treatment
Solid residues, turbidity	max. 80 °C / 6 bar	RHER	Cooling water, waste water
Solid matter, non- translucent	max. 100 °C / 16 bar	RHEX	Suspensions, sludge, emulsions

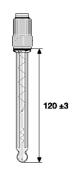
Note: All DULCOTEST® pH and ORP sensors are made using lead-free glass (RoHS-compliant)

1.2.1

pH Sensors With SN6 or Vario Pin Plug-In Head

pH sensors with plug-in heads are connected to a shielded coaxial cable with the appropriate socket. The rotatable sensor head sleeve prevents the cable from twisting when inserting and dismantling the sensor (e.g. when calibrating). The cable can therefore remain connected. This avoids the penetration of troublesome water onto the plug-in contacts.

Series								
PHE	pH sen	sor						
	Proper	ties						
	X	With so	olid elect	rolyte an	d circula	r gap diaphragm		
	K	With in	sensitive	plastics	shaft			
	N	KCI ref	illable se	ensor				
	E	Plug-in	sensor					
	R	With P	TFE circ	ular diapl	nragm			
	Р	Pressu	ıre-tight ι	up to 6 ba	ar			
	D	2 cerar	nics dia	ohragms	(double	unction)		
	S	Swimm	ning poo	sensor				
	F	Resista	ant to hy	drofluorio	acid			
	1	Robust	t sensor,	plastic h	ousing v	rith NPT thread, double junction, Teflon diaphragm		
		Withou	ıt specifi	cation: st	andard (el sensor		
		Specia	al equip	ment				
		Т	With in	tegral ter	nperatu	e gauge		
		Н		Temperature up to 100 °C, alkali-resistant				
		L	Vertica	/ertical to horizontal installation				
			pH me	asuring				
			012	1.	_	ange: 0 – 12		
			112			ange: 1 - 12		
			314	pH mea	asuring r	ange: 3 – 14		
			Electrical connection at the sensor					
			S Plug for coax connector SN6					
			V Vario Pin plug					
			Internal thread					
					E	Internal thread PG 13.5 for installation		
					L	None, laboratory sensor refillable with KCl		
						Diaphragm		
						3D 3 ceramic diaphragms		


pH Sensor PHES 112 SE

pH sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pk_6_016

1 ... 12 pH range 0 ... 60 °C **Temperature** 3.0 bar Max. pressure Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft **Shaft diameter** 12 mm **Fitting length** 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control All DULCOMETER® controllers and solenoid-driven metering pumps equipment

types D_4a and delta®

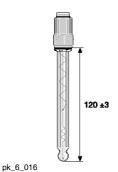
Typical applications Swimming pools, whirlpools, potable water

Resistance to Disinfectant

Direct potentiometric measurement, 2 electrodes, gel electrolyte, Measuring principle, technology ceramic diaphragm, separate temperature measurement for

temperature compensation needed

	Fitting length	Order no.
PHES-112-SE SLg100	100 ±3 mm	1051745
PHES 112 SE	120 ±3 mm	150702
PHES-112-SE SLg225	225 ±3 mm	150092


pH Sensor PHES 112 SE 3D

pH sensor optimised for use in potable water treatment, swimming pools/hot tubs and at low electrolytic conductivities of up to $60~^{\circ}\text{C}/3$ bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Three ceramic diaphragms optimised for low electrolytic conductivities
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

 pH range
 1 ... 12

 Temperature
 0 ... 60 °C

 Max. pressure
 3.0 bar

 Min. conductivity
 50 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm 3 Ceramic diaphragms

Sensor shaftGlassShaft diameter12 mmFitting length120 ±3 mmFitting positionVertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Low conductivity water

Resistance to Disinfectar

Measuring principle, technologyBypass: open outlet or return of the sample water into the process line, inline: direct installation into the pipework; fixed or replaceable

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Order no.

PHES 112 SE 3D 1045759

Sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors **DULCOTEST®**

pH Sensor PHEP 112 SE

pH sensor optimised for use with clear process water and conditions of up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system for high pressure/temperature requirements
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pk_6_019

1 ... 12 pH range 0 ... 80 °C **Temperature** Max. pressure 6.0 bar Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft **Shaft diameter** 15 mm Fitting length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

All DULCOMETER® controllers and solenoid-driven metering pumps equipment types D_4a and delta®

Typical applications Swimming pools during pressurisation for higher temperatures and pressures, potable and industrial water, electroplating, chemical

industries

Resistance to Disinfectant

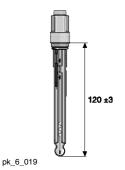
Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte, technology

ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEP 112 SE 150041


pH Sensor PHEP-H 314 SE

pH sensor optimised for use with clear process water, specifically for alkaline process solutions at high temperatures of up to 100 $^{\circ}\text{C}$

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Optimised pH-sensitive glass for high alkali content and high temperatures
- Long service life / excellent precision: Measurement at a high pH value of up to 14
- Long service life: at high temperatures of up to 100 °C
- Stable reference system for high pressure / temperature requirements
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range 3 ... 14 (Note: use below pH 3 shortens the service life)

Temperature 0 ... 100 °C

Max. pressure 6.0 bar up to 25 °C, 3.0 bar up to 100 °C

Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

DiaphragmCeramicSensor shaftGlassShaft diameter15 mmFitting length120 ±3 mmFitting positionVertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Monitoring or control of chemical processes with neutral to highly-

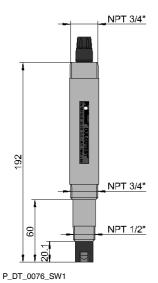
alkaline media and temperatures up to 100 °C

Resistance to Disinfectant, high alkalinity

Measuring principle,
technologyDirect potentiometric measurement, 2 electrodes, highly alkaline
tempered glass, ceramic diaphragm, gel electrolyte, separate
temperature measurement for temperature compensation needed

Order no.

PHEP-H 314 SE 1024882


pH Sensor PHEI 112 SE

Reliable online measurement of pH values in industrial waste water/water – with DULCOTEST® sensors.

Your benefits

- Solid high-grade plastic housing with integrated process connection for direct installation in the process with 1/2" and 3/4" NPT thread
- Large dirt-repellent Teflon diaphragm protects against unwanted blocking of the reference
- Double junction reference system for stability with chemically polluted water
- Large electrolyte reservoir for long service lives

1 ... 12 pH range **Temperature** 0 ... 80 °C Max. pressure 6.0 bar Min. conductivity 50 μS/cm

Electrolyte gel containing potassium chloride with a large KCI reservoir of gel

PTFE ring diaphragm Diaphragm

Sensor shaft **Plastic**

Sensor shaft Ø 17 \pm 0.2 mm (below the $\frac{1}{2}$ " NPT thread), 22 \pm 0.2 mm

(below the 3/4" thread)

20 \pm 0.2 mm (from the lower end of the ½" thread), 60 \pm 0.2 mm Fitting length

(from the lower end of the 3/4" thread)

Fitting position Vertical up to +25° 1/2" and 3/4" NPT thread Thread

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube All DULCOMETER® controllers and solenoid-driven metering pumps

Measuring and control

equipment

types D_4a and delta®

Municipal and industrial waste water Cooling water, Process water, Typical applications

Water in the chemical industry and paper making, generally for water

with a solid matter fraction

Resistance to Measuring principle,

technology

Disinfectant, solids content (turbid water), water-soluble chemicals direct potentiometric measurement, 2 probes, double junction, gel electrolyte, large Teflon diaphragm, separate temperature

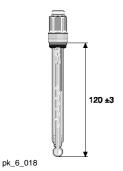
measurement for temperature compensation needed

	Order no.
PHEI 112 SE	1076610

Accessories

	Order no.
Adapter for DGMa; M34x3/4" NPT PVDF natural	1077156

Sensor Technology DULCOTEST $^{ ext{ iny B}}$


pH Sensor PHER 112 SE

pH sensor optimised for use in contaminated water containing solids and for low conductivity of > 50 μ S/cm at up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range1 ... 12Temperature0 ... 80 °CMax. pressure6.0 barMin. conductivity50 μS/cm

Electrolyte With KCl supply (salt rings in the reference electrolyte)

Diaphragm PTFE ring diaphragm

Sensor shaftGlassShaft diameter12 mmFitting length $120 \pm 3 \text{ mm}$ Fitting positionVertical up to $+25^{\circ}$

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Municipal and industrial waste water, cooling water, industrial water,

water in chemicals industry and paper production, generally for water with a solid matter fraction, water with low conductivity, e.g. from

reverse osmosis.

Resistance to Disinfectant, solids content (turbid types of water)

Measuring principle,

technology

Direct potentiometric measurement, 2 electrodes, Teflon ring diaphragm, polymer electrolyte, separate temperature measurement

for temperature compensation needed

Order no.

PHER 112 SE 1001586


pH Sensor PHEX 112 SE

pH sensor optimised for use with contaminated water with a high solids content at 6 bar/100 $^{\circ}$ C or 16 bar/25 $^{\circ}$ C

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for extremely high solids content
- The solid electrolyte makes the diaphragm redundant and prevents the reference system from becoming blocked up
- Long service life when sludge is present due to lack of a diaphragm
- Long service life as the solid electrolyte prevents the electrolyte from "bleeding"
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range $1 \dots 12$ Temperature $0 \dots 100 \,^{\circ}\text{C}$

Max. pressure 16.0 bar up to 25 °C, 6.0 bar up to 100 °C

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Electrolyte Polymer containing potassium chloride (solid)

Diaphragm Circular gap diaphragm (solid electrolyte)

Sensor shaftGlassShaft diameter12 mmFitting length120 ±3 mmFitting positionVertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 69

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Waste water, industrial water, process chemistry, emulsions,

suspensions, protein-containing media, in general for water with a high solid fraction, not suitable for use in clear water not suitable for media

with oxidation agents

Resistance to Solids content (turbid types of water), sludge, emulsions

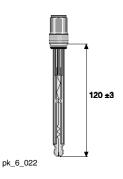
Measuring principle, Direct potentiometric measurement, 2 electrodes, no diaphragm,

technology polymer electrolyte, separate temperature measurement for

temperature compensation needed

	Fitting length	Order no.
PHEX 112 SE	120 ±3 mm	305096
PHEX 112 SE	225 ±3 mm	150061

ex HD works


pH Sensor PHED 112 SE

pH sensor optimised for use with chemically contaminated but clear water at up to 80 °C/8 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in chemically contaminated but clear water
- Double junction: two coupled ceramic diaphragms protect the reference system
- Long service life when chemical pollutants are present
- Special construction permits a maximum pressure of 8 bar
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range 1 ... 12 **Temperature** 0 ... 80 °C Max. pressure 8.0 bar Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Double junction

Sensor shaft Glass **Shaft diameter** 12 mm Fitting length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Chemically loaded waste water, industrial water, cooling water

Resistance to Disinfectants, water-soluble chemicals

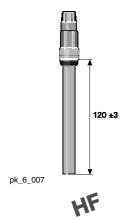
Measuring principle, Direct potentiometric measurement, 2 electrodes, double junction, gel technology

electrolyte, separate temperature measurement for temperature

compensation needed

Order no.

PHED 112 SE	741036


pH Sensor PHEF 012 SE

pH sensor optimised for use with acidic water containing fluoride and abrasive water containing solids at up to 50 °C/7 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Optimised pH glass for use in the presence of glass-corroding hydrofluoric acid (HF). HF is formed primarily in the presence of fluoride (F-) at a pH of < 4. Glass corrosion is promoted by a constant concentration of fluoride, a falling pH value and a rising temperature. The glass composition and structure of the PHEF type reduce the release of SiF4. Extended service life in the presence of fluoride (F^{-}) at a pH of < 7
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- The flat shape of the glass diaphragm and large ring diaphragm facilitate use in contaminated water, which also contains abrasive solids

pH range 0 ... 12 **Temperature** 0 ... 50 °C 7.0 bar Max. pressure Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm HDPE ring diaphragm, flat (Double Junction)

Sensor shaft Epoxy **Shaft diameter** 12 mm **Fitting length** 120 ±3 mm **Fitting position** Vertical up to +25°

Thread PG 13.5

SN6 plug-in head, rotatable with a ProMinent cable **Electrical connection**

Enclosure rating

Measuring and control

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube All DULCOMETER® controllers and solenoid-driven metering pumps

equipment types D_4a and delta®

Typical applications A significantly longer service life can be achieved compared with

standard pH sensors in media containing hydrofluoric acid, e.g. waste water from the semiconductor industry or electroplating applications

and air scrubbers

Resistance to Disinfectant, solids content (turbid types of water), hydrofluoric acid

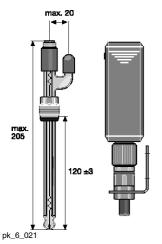
(HF), abrasive particles

Measuring principle, Direct potentiometric measurement, 2 electrodes, PE ring diaphragm, technology HF-compatible flat glass diaphragm, gel electrolyte, separate

temperature measurement for temperature compensation needed

Order no.

PHEF 012 SE 1010511


pH Sensor PHEN 112 SE

Refillable pH sensor optimised for use with chemically contaminated water at up to 80 °C/without excess pressure

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the
- 1 ceramic diaphragm made of special material and with an optimised size / with optimised pore diameter
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Long service life in the presence of chemicals dissolved in the water, which could contaminate the
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range 1 ... 12 **Temperature** 0 ... 80 °C

Atmospheric pressure Max. pressure

Min. conductivity 150 μS/cm

Electrolyte KCL electrolyte, refillable

Diaphragm Ceramic Sensor shaft Glass **Shaft diameter** 12 mm Fitting length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

SN6 plug-in head, rotatable with a ProMinent cable **Electrical connection**

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube All DULCOMETER® controllers and solenoid-driven metering pumps

Measuring and control equipment types D_4a and delta®

Typical applications Waste water, cooling waterchemically contaminated water

Resistance to Disinfectant, only for clear types of water

Measuring principle, Direct potentiometric measurement, 2 electrodes, liquid electrolyte, technology 1 ceramic diaphragm, separate temperature measurement for

temperature compensation needed

	Order no.
PHEN 112 SE	305090

Supplied without PE storage tank and tube

	Order no.
PE storage tank with connectors and tube	305058

We recommend installation approx. 0.5-1 m above the sample fluid level

	Capacity	Order no.
	ml	
KCI solution, 3 molar	250	791440
KCl solution, 3 molar	1,000	791441

sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors DULCOTEST®

pH Sensor PHEN 112 SE 3D

Refillable pH sensor optimised for use in contaminated water containing solids and water with a low conductivity of > 50 μ S/cm at up to 80 °C/without overpressure

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the electrode
- 3 ceramic diaphragms made of special material, with optimised size and optimised pore diameter
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Long service life in water with low conductivity > 50 μS/cm and where solids are present
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range $1 \dots 12$ Temperature $0 \dots 80 \,^{\circ}\text{C}$

Max. pressure Atmospheric pressure

Min. conductivity 50 μS/cm

Electrolyte 3 molar potassium chloride solution, refillable

Diaphragm 3 ceramic diaphragms

Sensor shaftGlassShaft diameter12 mmFitting length $120 \pm 3 \text{ mm}$ Fitting positionVertical up to $+25^{\circ}$

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube All DULCOMETER® controllers and solenoid-driven metering pumps

Measuring and control

equipment types D_4a and delta®

Typical applications Waste water, water with low conductivity, e.g. from reverse osmosis.

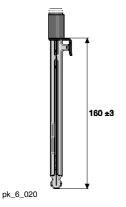
Resistance to Disinfectant, solids content (turbid types of water)

Measuring principle,
technologyDirect potentiometric measurement, 2 electrodes, liquid electrolyte,
1 ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEN 112 SE 3D 150078


pH Sensor PHEN 012 SL

Refillable pH sensor for use with manual measuring instruments, optimised for clear and also chemically contaminated water at up to 80 °C/without overpressure

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the electrode
- 1 ceramic diaphragm made of special material and with an optimised size / with optimised pore diameter
- Long service life in the presence of dissolved chemicals, which could contaminate the reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range $0 \dots 12$ Temperature $0 \dots 80 \,^{\circ}\text{C}$

Max. pressure Atmospheric pressure

Min. conductivity 150 μS/cm

Electrolyte KCI electrolyte, refillable

DiaphragmCeramicSensor shaftGlassShaft diameter12 mmFitting length $160 \pm 3 \text{ mm}$ Fitting positionVertical up to $+25^{\circ}$

Thread None

Electrical connection SN6 plug-in head

Enclosure rating IP 65

Installation Immersion by tripod or manually

Measuring and control All DULCOMETER® controllers and solenoid-driven metering pumps

equipment types D_4a and delta®

Typical applicationsManual measurements in laboratories **Resistance to**Disinfectants, water-soluble chemicals

Measuring principle, technologyDirect potentiometric measurement, 2 electrodes, liquid electrolyte,
1 ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEN 012 SL	305078

Sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors **DULCOTEST®**

pH Sensor PHEN 012 SL 3D

Refillable pH sensor for use with manual measuring instruments, optimised for contaminated water containing solids and with a low conductivity of $> 50 \mu S/cm$ at up to 80 °C/without overpressure

- Electrochemical combination electrode: pH and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the
- 3 ceramic diaphragms made of special material and with an optimised size / with optimised pore diameter
- Long service life in water with low conductivity > 50 μS/cm and where solids are present
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH range 0 ... 12 **Temperature** 0 ... 80 °C

Atmospheric pressure Max. pressure

Min. conductivity 50 µS/cm

Electrolyte 3 molar potassium chloride solution, refillable

Diaphragm 3 ceramic diaphragms

Sensor shaft Glass **Shaft diameter** 12 mm Fitting length 160 ±3 mm Vertical up to +25° Fitting position

Thread None

Electrical connection SN6 plug-in head

Enclosure rating IP 65

Installation Immersion by tripod or manually

Measuring and control All DULCOMETER® controllers and solenoid-driven metering pumps equipment

types D_4a and delta®

Typical applications Laboratories, water with low conductivity, e.g. from reverse

osmosis.Waste water

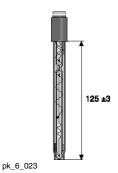
Resistance to Disinfectant, solids content (turbid types of water)

Measuring principle, Direct potentiometric measurement, 2 electrodes, liquid electrolyte, technology 3 ceramic diaphragms, separate temperature measurement for

temperature compensation needed

Order no.

PHEN 012 SL 3D 791508


pH Sensor PHEK 112 S

pH sensor for use with manual measuring instruments, with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to 80 $^{\circ}$ C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

 pH range
 1 ... 12

 Temperature
 0 ... 60 °C

 Max. pressure
 3.0 bar

 Min. conductivity
 150 μS/cm

Electrolyte Gel containing potassium chloride

DiaphragmCeramicSensor shaftPolycarbonateShaft diameter12 mmFitting length120 ±3 mmFitting positionVertical up to +25°

Thread None

Electrical connection SN6 plug-in head

Enclosure rating IP 65

Installation Immersion by tripod or manually

Measuring and control

All DULCOMETER® controllers and solenoid-driven metering pumps

equipment types D_4a and delta®

Typical applications Hand-held measurement in swimming pools, potable water

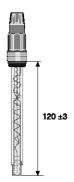
Resistance to Disinfectan

Measuring principle,
technologyDirect potentiometric measurement, 2 electrodes, gel electrolyte,
ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEK 112 S 305051


pH Sensor PHEK 112 SE

pH sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pk_6_090

1 ... 12 pH range **Temperature** 0 ... 60 °C 3.0 bar Max. pressure Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Ceramic Sensor shaft Polycarbonate **Shaft diameter** 12 mm Fitting length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Swimming pools, potable water, aquaria

Resistance to

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte, technology ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEK 112 SE 1028457

ex HD works

1.1.2018 Product Catalogue 2018

pH Sensor PHEK-L 112 SE

pH sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs, horizontal installation possible, at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- With plastic shaft to prevent glass breakage
- Horizontal (level) installation possible (90° angle) (usually limited to 0 75° angle)
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material and optimised size / optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system

pH range 1 ... 12 **Temperature** 0 ... 60 °C Max. pressure 3.0 bar Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

Diaphragm Sensor shaft Polycarbonate **Shaft diameter** 12 mm Fitting length 120 ±3 mm

Fitting position Vertically to horizontally

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Measuring and control

Typical applications

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube All DULCOMETER® controllers and solenoid-driven metering pumps

equipment types D_4a and delta®

Swimming pools, potable water, aquaria. Horizontal installation

possible.

Resistance to Disinfectant

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte, technology ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

PHEK-L 112 SE 1034918

Sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors DULCOTEST®

pH Sensor PHEPT 112 VE

pH sensor with integral temperature measurement, optimised for use with clear process water and changing process temperature of up to 80 $^{\circ}$ C/6 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive chemicals
- Stable reference system for high pressure / temperature requirements
- Integrated Pt 100 temperature sensor for temperature compensation of the pH measurement in higherorder measuring instruments eliminates the need for an additional sensor housing and external temperature sensor
- Vario Pin plug-in head with IP 67 specification
- Twist protection for the sensor cable connected. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding troublesome moisture on the connector contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pk 6 068

 pH range
 1 ... 12

 Temperature
 0 ... 80 °C

 Max. pressure
 6.0 bar

 Min. conductivity
 150 μS/cm

Electrolyte gel containing potassium chloride

DiaphragmCeramicSensor shaftGlassShaft diameter15 mmFitting length120 ±3 mmFitting positionvertical up to +25°

Thread PG 13.5

Electrical connection Vario Pin plug-in head

Enclosure rating IP 67

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube all DULCOMETER® controllers (with the exception of DCCa pH)

Measuring and control

equipment

Typical applications Swimming pools during pressurisation for higher temperatures and

pressures, potable and industrial water, electroplating, chemical

industry, processes with a temperature change.

Resistance to Disinfectant

Measuring principle, technologyDirect potentiometric measurement, 2 electrodes, gel electrolyte, ceramic diaphragm, integrated temperature measurement for

temperature compensation

 Order no.

 PHEPT 112 VE
 1004571

Accessories: Measuring Line for Sensors with Vario Pin Plug-in Head

Ready-made 6-wire measuring line with Vario Pin plug for connection to sensor type PHEPT 112 VE.

	Length	Order no.
Vario Pin signal lead VP 6-ST/ 2 m	2 m	1004694
Vario Pin signal lead VP 6-ST/ 5 m	5 m	1004695
Vario Pin signal lead VP 6-ST/10 m	10 m	1004696

1.1.2018 Product Catalogue 2018 1-27

Sensor Technology DULCOTEST®

pH, ORP, Fluoride and Temperature Sensors **DULCOTEST®**

1.2.2

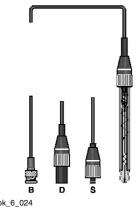
pH Sensors with Fixed Cable

pH sensors with fixed cable contain a shielded coaxial cable, which is firmly connected to the sensor head by a rotating sleeve, thereby preventing the cable from twisting when inserting and dismantling the sensor.

Series										
PHE	pH sensor									
	Properties									
	Х	with solid electrolyte and annular gap diaphragms								
	K with insensitive plastic shaft									
	N	KCI ref	illable se	nsor						
	R	with PT	FE ring	diaphrag	ıms					
	Р	pressui	re-tight u	p to 6 ba	ar					
	D	with do	uble dia	ohragm	double j	unction)				
	S	Swimm	ing pool	sensor						
		Specia	l equipi	nent						
	T with integral temperature gauge									
pH measuring range					range					
			112	pH mea	asuring r	ange: 1.	12			
				Electri	ectrical connection at the sensor					
				F	Fixed cable sensor					
					Interna	nternal thread				
					E	Internal thread				
					L			•	refillable	
							diamete			
						3		liameter		
						5		liameter	5 mm	
							Cable			
							01	I	ength in metres	
									cal connection at device	
								S	SN6	
								D	DIN	
								В	BNC	
								0	without connector	
								М	SN6 male	

The technical data corresponds to pH sensors with SN6 plug-in head (see page → 1-28)

pH Sensor PHES 112 F


pH sensor for use with manual measuring instruments, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal

pH sensor, gel-filled, with fixed coaxial cable and device plug, without screw-in thread.

	Cable length	Device plug	Order no.
	m		
PHES 112 F 301 S	1	SN6	304976
PHES 112 F 301 B	1	BNC	304980
PHES 112 F 303 B	3	BNC	304981

sensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors DULCOTEST®


pH Sensor PHES 112 FE

pH sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

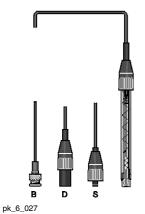
Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
PHES 112 FE 303 S	3	SN6	304984
PHES 112 FE 310 S	10	SN6	304985
PHES 112 FE 503 D	3	DIN	304986
PHES 112 FE 303 B	3	BNC	304988
PHES 112 FE 310 O	10	without	304990
PHES 112 FE 301 B	1	BNC	150079
PHES 112 FE 301 S	1	SN6	150926
PHES 112 FE 303 O	1	without	150101

Further types on request.

pH Sensor PHEK 112 F



pH sensor for use with manual measuring instruments, with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to 80 °C/3 bar

Your benefits

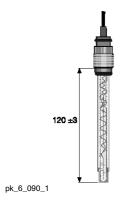
- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- $\quad\blacksquare\quad$ Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH sensor with polycarbonate plastic shaft, glass membrane protection, with fixed coaxial cable and device plug, without screw-in thread.

	Cable length	Device plug	Order no.
	m		
PHEK 112 F 301 S	1	SN6	304994
PHEK 112 F 501 D	1	DIN	304995
PHEK 112 F 301 B	1	BNC	304996

pH Sensor PHEK 112 FE

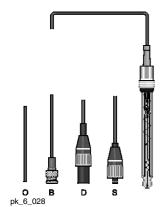
pH sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to $60\,^{\circ}\text{C/3}$ bar


Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pH sensor with polycarbonate plastic shaft, glass membrane protection, with fixed coaxial cable and device plug, with screw-in thread.

Other types on request.

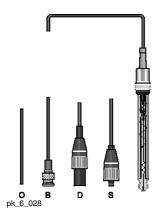

pH Sensor PHEP 112 FE

pH sensor optimised for use with clear process water and conditions of up to 80 $^{\circ}\text{C/6}$ bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system for high pressure/temperature requirements
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
PHEP 112 FE 303 S	3	SN 6	150673
PHEP 112 FE 305 O	5	without	150689
PHEP 112 FE 510 O	10	without	150929


pH Sensor PHER 112 FE

pH sensor optimised for use in contaminated water containing solids and for low conductivity of > 50 $\mu S/cm$ at up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
PHER 112 FE 503 O	3	without	150878
PHER 112 FE 510 O	10	without	150874

Other types on request.

pH Sensor PHEX 112 FE

pH sensor optimised for use with contaminated water with a high solids content at 6 bar/100 $^{\circ}\text{C}$ or 16 bar/25 $^{\circ}\text{C}$

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for extremely high solids content
- The solid electrolyte makes the diaphragm redundant and prevents the reference system from becoming blocked up
- Long service life when sludge is present due to lack of a diaphragm
- Long service life as the solid electrolyte prevents the electrolyte from "bleeding"
- Stable reference system
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
PHEX 112 FE 510 S	10	SN 6	150025
PHEX 112 FE 510 O	10	without	150084
PHEX 112 FE 302 O	2	without	150086

pH Sensor PHED 112 FE

pH sensor optimised for use with chemically contaminated but clear water at up to 80 °C/8 bar

120 ±3

Your benefits

- Electrochemical combination electrode: pH and reference electrode integrated
- Diaphragm and reference system optimised for use in chemically contaminated but clear water
- Double junction: two coupled ceramic diaphragms protect the reference system
- Long service life when chemical pollutants are present
- Special construction permits a maximum pressure of 8 bar
- Rotating sensor head sleeve prevents the cable twisting when inserting and dismantling the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

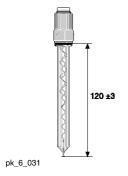
	Cable length	Device plug	Order no.
	m		
PHED 112 FE 303 B	3	BNC	741038

1.2.3 ORP Sensors with SN6 Plug-in Head

ORP sensors with SN6 plug-in head are connected to a shielded coaxial cable with the appropriate socket. The rotating sensor head sleeve prevents the cable from twisting when inserting and dismantling the sensor. The cable can therefore remain connected. This avoids moisture from contacting the plug-in contacts.

Series	3									
RHE	ORP s	ORP sensor								
	Properties									
	X	with solid electrolyte and circular gap diaphragm								
	K	with ins	ensitive	plastic	shaft					
	Р	pressu	re tight i	up to 6 b	ar					
	R	with PT	FE circ	ular diap	hragm					
	N	KCI ref			J					
	S swimming pool sensor									
	_	Special equipment								
			vertical to horizontal installation							
				or material						
			Pt		latinum (pin)					
			Au	Gold (p	. ,					
	Electrical connection at the sensor					neation at the senser				
	S Plug for coax connector SN6 Internal thread									
					E	PG 13.5				

DULCOTEST® ORP sensor selection guide see page → 1-9


ORP Sensor RHES-Pt-SE

ORP sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Electrolyte Gel containing potassium chloride

ORP electrode Platinum

Diaphragm Ceramic

Sensor shaft Glass

Shaft diameter 12 mm

Fitting length 120 ±3 mm

Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 68

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Swimming pools, whirlpools, potable water

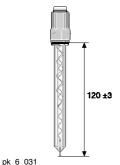
1.1.2018 Product Catalogue 2018 1-33

Resistance to Disinfectant

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte,

technology ceramic diaphragm

	Fitting length	Order no.
RHES-Pt-SE SLg100	100 ±3 mm	1051746
RHES-Pt-SE	120 ±3 mm	150703


ORP Sensor RHES-Au-SE

ORP sensor optimised for use in potable water treatment, swimming pools/hot tubs when electrolysis processes are used for disinfection and with ozone treatment at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Gold electrode to prevent faults by products from electrolysis processes where the electrodes are immersed directly into the sample water
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Temperature 0 ... 60 °C Max. pressure 3.0 bar Min. conductivity 150 μS/cm

Gel containing potassium chloride Electrolyte

ORP electrode Diaphragm Ceramic Sensor shaft Glass **Shaft diameter** 12 mm Fitting length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control All DULCOMETER® controllers and solenoid-driven metering pumps equipment types D_4a and delta®

Swimming pools, whirlpools, potable water, with disinfectants from

Typical applications electrolysis processes (electrodes directly in the process water)

Disinfectant, by-products from electrolysis process and from ozone

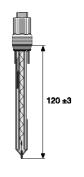
Resistance to

treatment process

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte,

technology ceramic diaphragm

	Order no.
RHES-Au-SE	1044544


ORP Sensor RHEP-Pt-SE

ORP sensor optimised for use with clear process water and conditions of up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to material, which is inert to aggressive chemicals
- Stable reference system for high pressure / temperature requirements
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pk_6_035

Temperature 0 ... 80 °C Max. pressure 6.0 bar Min. conductivity 150 μS/cm

Gel containing potassium chloride Electrolyte

ORP electrode **Platinum** Diaphragm Ceramic Sensor shaft Glass **Shaft diameter** 15 mm Fitting length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Swimming pools during pressurisation for higher temperatures and

pressures, potable and industrial water, electroplating,

Resistance to Disinfectant, not suitable for media containing ozone, cyanides,

electrolysis processes (electrodes directly in the sample water) Direct potentiometric measurement, 2 electrodes, gel electrolyte,

Measuring principle, technology ceramic diaphragm

Order no.

RHEP-Pt-SE 150094

ORP Sensor RHEP-Au-SE

ORP sensor optimised for use with clear process water when electrolysis processes are used for disinfection and with ozone treatment and with cyanide detoxification at conditions of up to 80 $^{\circ}\text{C/6}$ bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Gold electrode to prevent faults by products from electrolysis processes where the electrodes are immersed directly into the sample water
- Diaphragm and reference system optimised for exacting process requirements
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive chemicals
- Stable reference system for high pressure / temperature requirements
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Temperature 0 ... 80 °C 6.0 bar Max. pressure Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrode Gold Diaphragm Ceramic Sensor shaft Glass **Shaft diameter** 15 mm Fitting length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube All DULCOMETER® controllers and solenoid-driven metering pumps

Measuring and control

equipment

types D_4a and delta®

Typical applications Resistance to

Cyanide detoxification, ozone monitoring Disinfectant, by-products from electrolysis process and from ozone

treatment process, cyanides

Direct potentiometric measurement, 2 electrodes, gel electrolyte, Measuring principle,

technology ceramic diaphragm

Order no.

RHEP-Au-SE 1003875

ORP Sensor RHER-Pt-SE

ORP sensor optimised for use in contaminated water containing solids and for low conductivity of > 50 μ S/cm at up to 80 °C/6 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- The large dirt-repellent Teflon® diaphragm prevents the reference system from becoming blocked up
- Long service life when solids are present
- High-viscosity electrolyte combined with a salt reservoir prevents the electrolyte from "bleeding"
- Long service life without drifts when there is clear water with low conductivity
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

0 ... 80 °C **Temperature** Max. pressure 6.0 bar Min. conductivity 50 µS/cm

Electrolyte Electrolyte with KCI supplement (salt rings in the reference electrolyte)

ORP electrode **Platinum**

Diaphragm PTFE ring diaphragm

Sensor shaft Glass **Shaft diameter** 12 mm Fitting length 120 ±3 mm **Fitting position** Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head/other versions on request

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Municipal and industrial waste water, cooling water, process water,

chemical applications, paper manufacturing. In general for water with a

noticeable solid fraction.

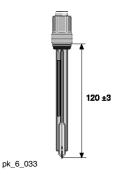
Disinfectant, solids content (turbid types of water) Resistance to

Measuring principle, Direct potentiometric measurement, 2 electrodes, Teflon ring

technology diaphragm, polymer electrolyte

Order no.

RHER-Pt-SE 1002534


ORP Sensor RHEX-Pt-SE

ORP sensor optimised for use with contaminated water with a high solids content at 6 bar/100 °C or 16 bar/25 °C

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for extremely high solids content
- The solid electrolyte makes the diaphragm redundant and prevents the reference system from becoming blocked up
- Long service life when sludge is present due to lack of a diaphragm
- Long service life as the solid electrolyte prevents the electrolyte from "bleeding"
- Stable reference system
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal 1(RoHS-compliant)

Temperature 0 ... 100 °C

Max. pressure 16.0 bar up to 25 °C, 6.0 bar up to 100 °C

Min. conductivity 500 uS/cm

Electrolyte Polymer containing potassium chloride (solid)

ORP electrode Platinum

Circular gap (solid electrolyte) Diaphragm

Sensor shaft Glass **Shaft diameter** 12 mm Fitting length 120 ±3 mm Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head/other versions on request

Enclosure rating

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Waste water, industrial water, process chemistry, emulsions,

> suspensions, protein-containing media. In general for water with a high solid fraction. Not suitable for clear media. Not suitable for media with

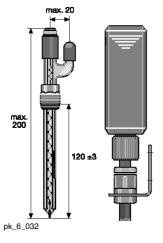
oxidation agents.

Resistance to Solids content (turbid types of water), sludge, emulsions

Measuring principle, Direct potentiometric measurement, 2 electrodes, no diaphragm, technology

polymer electrolyte

Order no. 305097


ORP Sensor RHEN-Pt-SE

Refillable ORP sensor optimised for use with chemically contaminated water at up to 80 $^{\circ}\text{C/without}$ excess pressure

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Renewable liquid electrolyte by continuous replenishment from an electrolyte bottle installed above the electrode
- 1 ceramic diaphragm made of special material, with an optimised size and with optimised pore diameter
- Long service life in the presence of chemicals dissolved in the water, which could contaminate the reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Temperature 0 ... 80 °C

Max. pressure Operation at atmospheric pressure

Min. conductivity 150 μS/cm

Electrolyte KCl electrolyte, refillable

ORP electrode Platinum

Diaphragm Ceramic

Sensor shaft Glass

Shaft diameter 12 mm

Fitting length 120 ±3 mm

Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head/other versions on request

Enclosure rating IP 65

Installation By tripod or manually

Measuring and controlAll DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Waste water, cooling water, chemically contaminated water, only clear

types of water

Resistance to Disinfectant, chemicals dissolved in water

Measuring principle, Direct potentiometric measurement, 2 electrodes, liquid electrolyte,

technology 1 ceramic diaphragm

	Order no.
RHEN-Pt-SE	305091

Supplied without PE storage tank and tube

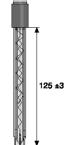
Accessories

equipment

	Capacity ml	Order no.
PE storage tank with connectors and tube	-	305058
KCl solution, 3 molar	250	791440
KCI solution, 3 molar	1,000	791441

We recommend installation approx. 0.5-1 m above the sample fluid level.

ORP Sensor RHEK-Pt-S



ORP sensor with plastic shaft for use with manual measuring instruments, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 $^{\circ}$ C/3 bar

Your benefits

Temperature

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

pk_6_036

Min. c

0 ... 60 °C

Max. pressure Operation at atmospheric pressure

Min. conductivity 150 μS/cm

Electrolyte Gel containing potassium chloride

ORP electrode Platinum
Diaphragm Ceramic
Sensor shaft Polycarbonate
Shaft diameter 12 mm
Fitting length 125 ±3 mm
Fitting position Vertical up to +25°

Thread None

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation By tripod or manually

Measuring and control

All DULCOMETER® controllers and solenoid-driven metering pumps

equipment types D_4a and delta®

Typical applications Manual measurement e.g. swimming pools, potable water, aquarium

water

Resistance to Disinfectant

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte,

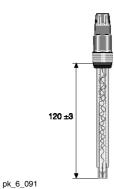
technology ceramic diaphragm

Order no.

RHEK-Pt-S	305052

ensor Technology DULCOTEST®

1.2 pH, ORP, Fluoride and Temperature Sensors DULCOTEST®


ORP Sensor RHEK-Pt-SE

ORP sensor with plastic shaft, optimised for use in potable water treatment, swimming pools/hot tubs at up to $60 \, ^{\circ}\text{C/3}$ bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

Temperature $0 \dots 60 \, ^{\circ} \text{C}$ Max. pressure $3.0 \, \text{bar}$ Min. conductivity $150 \, \mu \text{S/cm}$

Electrolyte Gel containing potassium chloride

ORP electrode Platinum

Diaphragm Ceramic

Sensor shaft Polycarbonate

Shaft diameter 12 mm

Fitting length 120 ±3 mm

Fitting position Vertical up to +25°

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube All DULCOMETER® controllers and solenoid-driven metering pumps

Measuring and control

equipment

types D_4a and delta®

Typical applications Swimming pool,Potable water,Aquariums,

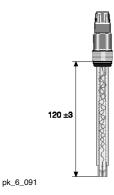
Measuring principle. Direct potentiometric measurement, 2 electrodes, gel electrolyte,

technology ceramic diaphragm

Order no.

RHEK-Pt-SE 1028459

Product Catalogue 2018 1-41


ORP Sensor RHEK-L Pt-SE

ORP sensor with plastic shaft, optimised for vertical to horizontal installation position for use in potable water treatment, swimming pools/hot tubs at up to 60 $^{\circ}$ C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- With plastic shaft to prevent glass breakage
- Horizontal (level) installation possible (90° angle) (usually limited to 0 75° angle)
- Diaphragm and reference system optimised for use in swimming pools and for potable water
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Rotating sensor head sleeve. This means that the cables can remain connected during installation and dismantling of the sensor, avoiding moisture on the plug-in contacts
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system

Electrolyte Gel containing potassium chloride

ORP electrode Platinum

Diaphragm Ceramic

Sensor shaft Polycarbonate

Shaft diameter 12 mm

Fitting length 120 ±3 mm

Fitting position vertical to horizontal

Thread PG 13.5

Electrical connection SN6 plug-in head, rotatable with a ProMinent cable

Enclosure rating IP 65

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Measuring and control

technology

equipment

All DULCOMETER® controllers and solenoid-driven metering pumps

types D_4a and delta®

Typical applications Swimming pools, Potable water, Aquariums, Horizontal installation

possible.

Resistance to Disinfectant

Measuring principle, Direct potentiometric measurement, 2 electrodes, gel electrolyte,

ceramic diaphragm

Order no.

RHEK-L Pt-SE	1034919

1.2.4

ORP Sensors with Fixed Cable

All ORP sensors with fixed cable contain a shielded coaxial cable, which is firmly connected to the sensor head by a rotating sleeve. This prevents the cable from twisting when inserting and dismantling the sensor.

Series										
RHE	ORP se	ensor								
	Proper	ties								
	K									
	S	Swimm	ing pool	sensor						
		Sensor	r materia	al						
		Pt	Platinur	n						
			Electric	cal conr	nection	at the se	ensor			
			F	Fixed c	able sen	sor				
				Interna	l thread					
				E	internal	thread F	PG 13.5			
					Cable of	diamete	r			
					3	cable d	iameter	3 mm		
					5	cable d	iameter	5 mm		
						Cable I				
						01	cable le	ength in metres		
		Electrical connection at device								
							S	SN6		
							D	DIN		
							В	BNC		

The technical data corresponds to pH sensors with SN6 plug-in head (see page \rightarrow 1-33)

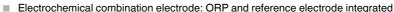
ORP Sensor RHES-Pt-FE

ORP sensor optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 °C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Anti-twist mechanism on the fixed cable prevents the cable from twisting when inserting and removing the sensor
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable leligili	Device plug	Order no.
	m		
RHES-Pt-FE 301 B	1	BNC	150758
RHES-Pt-FE 303 B	3	BNC	150038
RHES-Pt-FE 301 S	3	SN6	304949



ORP Sensor RHES-Pt-F

1

ORP sensor for use with manual measuring instruments, optimised for use in swimming pools / hot tubs at up to 60 $^{\circ}\text{C}$ / 3 bar

Your benefits

- Diaphragm and reference system optimised for use in swimming pools
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
RHES-Pt-F 303 B	3	BNC	304983

Other types on request.

ORP Sensor RHEK-Pt-F

ORP sensor with plastic shaft for use with manual measuring instruments, optimised for use in potable water treatment, swimming pools/hot tubs at up to 60 $^{\circ}$ C/3 bar

Your benefits

- Electrochemical combination electrode: ORP and reference electrode integrated
- Diaphragm and reference system optimised for use in swimming pools
- With plastic shaft to prevent glass breakage
- Mechanical protection of the glass diaphragm
- Ceramic diaphragm with special material, optimised size and optimised pore diameter
- Long service life due to reduced diffusion ("bleeding") of the electrolyte
- Long service life due to the material, which is inert to aggressive disinfectants
- Stable reference system
- Lead-free glass for advanced and environmentally-friendly production, use and disposal (RoHS-compliant)

	Cable length	Device plug	Order no.
	m		
RHEK-Pt-F 301 S	1	SN 6	304997
RHEK-Pt-F 501 D	1	DIN	304998

1.2.5

DULCOTEST® Fluoride Sensors

DULCOTEST® fluoride sensors are ion selective sensors, which function according to the potentiometric measuring principle and are suitable for determining the concentration of fluoride anions in aqueous solutions. The measuring point with the FPV1 type measuring transducer was optimised for use in monitoring the fluoridation of potable water in waterworks (measurement range up to 10 ppm). The measuring point with the measuring transducer FP 100 V1 with a measurement range up to 100 ppm is used for clear waste water free of solid material.

Fluoride Sensor FLEP 010-SE / FLEP 0100-SE

Highly selective, online fluoride sensor, optimised for the fluoridation of potable water and monitoring of waste water with a pH of up to 9.5

Your benefits

- Highly selective measurement of fluoride by LaF₃ single crystal silicon
- Unique pH range of up to pH 9.5 by optimisation of the electrolyte
- Two measuring ranges available: 0.05 -10 ppm for potable water; 0.5 -100 ppm for waste water

Technical Details

A 4-20 mA measuring transducer, a reference electrode and a temperature sensor for temperature compensation are required as well as the fluoride sensor.

Measured variable Fluoride ion concentration

Reference method Photometrically (Photometer DT2C)

Measuring range With measuring transducer FPV1: 0.05...10 mg/l

With measuring transducer FP100V1: 0.5...100 mg/l

pH range $5.5 \dots 9.5$ Temperature $1 \dots 35 \,^{\circ}\mathrm{C}$

Max. pressure 7.0 bar, (no pressure surges)

 $\begin{tabular}{lll} \mbox{Min. conductivity} & 100 \ \mu\mbox{S/cm} \\ \mbox{Shaft diameter} & 12.0 \ m\mbox{m} \\ \mbox{Fitting length} & 120 \ m\mbox{m} \\ \mbox{Thread} & \mbox{PG } 13.5 \\ \end{tabular}$

Electrical connection SN6 plug-in head

Enclosure rating IP 6

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Intake flow 10...200 l/h

Flow 20 l/h (recommended)

Response time T95 max. 30 s (for conc. > 0.5 ppm)

Shelf life 6 months

In-line probe fitting

Bypass fitting DLG IV

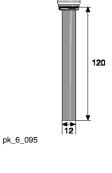
Measuring and control

D1C, DAC, DULCOMARIN®

equipment

Typical applications Monitoring the fluoridation of potable water in waterworksWaste water

Resistance to Disinfectant, solids content (turbid types of water)


Measuring principle, technologyDirect potentiometric measurement, 2 electrodes, gel electrolyte, ceramic diaphragm, separate temperature measurement for

temperature compensation needed

Order no.

FLEP 010-SE / FLEP 0100-SE

Note: Measuring ranges from 50 ... 1,000 mg/l and 500 ... 10,000 mg/l available on request.

1.1.2018 Product Catalogue 2018 1-4

Accessories

	Order no.
Measuring transducer 4-20 mA FPV1	1028280
Measuring transducer 4-20 mA FP 100 V1	1031331
Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
Reference electrode REFP-SE	1018458
Pt 100 SE	305063
Polishing paste	559810

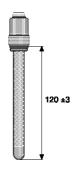
Panel-mounted fluoride measuring station

The panel-mounted measuring stations that could be ordered to date with part no.1010602 (230 V) and 1010603 (115 V) can now be ordered as measuring stations of the DULCOTROL® DWCa product line.

Overview of DULCOTROL® DWCa_Potable Water/F&B See page → 3-3

1.2.6

pk_6_026


DULCOTEST® Temperature Sensors

Temperature measurement with DULCOTEST® sensors: Can be used for direct temperature measurement or temperature compensation during measurement of pH, fluoride, conductivity, chlorine dioxide or hydrogen peroxide.

Your benefits

- Select Pt 100 or Pt 1000, depending on measuring range and accuracy required.
- Sturdy design with dimensions of a standard pH sensor; the sensor element is integrated in a chemically inert glass sleeve.
- Easily installed in a similar way to standard pH sensors with a PG 13.5 thread in existing fittings.
- Transmitter with display/operation and without display/operation for transmission/conversion of the primary signal into a 4-20 mA signal and for transmission to a central control unit (PLC).

Temperature 0 ... 100 °C

Max. pressure 10.0 bar

Thread PG 13.5

Electrical connection SN6

Typical applications Temperature measurement and pH temperature correction

	Order no.
Pt 100 SE	305063
Pt 1000 SE	1002856

1.3.1 Amperometric Sensors for Chlorine, Bromine, Chlorine Dioxide, Chlorite, Ozone, Dissolved Oxygen, Peracetic Acid and Hydrogen Peroxide

The advantages at a glance:

- 12 measuring parameters available with analogue construction, each for simple installation to the same fittings and controllers
- Application-specific sensor models permit optimum operation with varying process conditions
- Efficient process management by precise measurement in real-time
- Amperometric measuring principle means no interference by turbidity or discolouration
- Diaphragm-covered measuring electrodes ensure reliable operation and long service life even under adverse and variable process conditions

Note the following points for optimum operation of amperometric sensors:

- Use of DULCOMETER® controllers
- Installation only in ProMinent fittings type DGM or DLG III
- Specified flow between 30...60 l/h
- Chlorine measurement only with a steady pH: if not possible, see Chapter 3.4
- Regular calibration with a photometer (e.g. type DT)

Important:

No amperometric sensors are galvanically isolated. When using with external devices (e.g. PLC), ensure that the supply voltage and analogue input signal are galvanically isolated.

Selection guide for DULCOTEST® amperometric sensors

Measured variable	Applications	Graduated measuring range	Connection to DULCOMETER®	Sensor type	See page
Free chlorine	Potable water, swimming pools	0.01–100 mg/l	D1C, DAC	CLE 3-mA-xppm, CLE 3.1-mA-xppm	→ 1-51
Free chlorine	Process and waste water	10 - 200 mg/l	D1C, DAC	CLR 1-mA	→ 1-63
Free chlorine	Potable water, swimming pool water	0.01 - 10 mg/l	DULCOMARIN®	CLE 3-CAN-xppm, CLE 3.1-CAN-xppm	→ 1-54
Free chlorine	Potable water, swimming pool water, in situ electrolysis (without diaphragm)	0.02-10 mg/l	D1C, DAC	CLO 2-mA-2ppm	→ 1-56
Free chlorine	Swimming pools, uncontaminated potable water and process water, and can also be used together with diaphragm-free electrolysis processes.	0.01-10 mg/l	DULCOMARIN®	CLO 2-mA-2ppm	→ 1-57
Free chlorine	Hot water up to 70 °C (legionella), in situ electrolysis (without diaphragm)	0.02-2 mg/l	D1C, DAC	CLO 2-mA-2ppm	→ 1-58
Free chlorine	Potable water, swimming pools	0.01-50 mg/l	DMT	CLE 3-DMT-xppm	→ 1-53
Free chlorine	Potable water, swimming pools	0.05-5 mg/l	COMPACT	CLB 2-μA-xppm	→ 1-59
Free chlorine	Potable water, swimming pool water	0.05-5 mg/l	COMPACT	CLB 3-µA-xppm	→ 1-60
Free chlorine	Cooling, industrial and waste water, water with higher pH values (stable); seawater (free chlorine exists as bromine)	0.01-10 mg/l	D1C, DAC	CBR 1-mA-xppm	→ 1-61
Total available chlorine	Swimming pool water with chlorine-organic disinfectants	0.02–10 mg/l	D1C, DAC	CGE 3-mA-xppm	→ 1-64
Total available chlorine	Swimming pool water with organic chlorine disinfectants, in situ electrolysis (without diaphragm)	0.02 - 10 mg/l	D1C, DAC	CGE 3-mA	→ 1-64
Total available chlorine	Swimming pool water with chlorine-organic disinfectants	0.01–10 mg/l	DULCOMARIN®	CGE 3-CAN-P-xppm	→ 1-65
Total chlorine	Potable, industrial, process and waste water	0.01-10 mg/l	D1C, DAC	CTE 1-mA-xppm	→ 1-66
Total chlorine	Potable, industrial, process and waste water	0.01-10 mg/l	DMT	CTE 1-DMT-xppm	→ 1-67
Total chlorine	Potable, industrial, process and waste water	0.01-10 mg/l	DULCOMARIN®	CTE 1-CAN-P-xppm	→ 1-68
Combined chlorine	Swimming pool water	0.02–2 mg/l	DAC	CTE 1-mA-2 ppm + CLE 3.1-mA-2 ppm	→ 1-68

				_	_
Measured variable	Applications	Graduated measuring	Connection to DULCOMETER®	Sensor type	See page
		range	DULCOMETER		
Combined chlorine	Swimming pool water	0.01–10 mg/l	DULCOMARIN®	CTE 1-CAN-P-xppm + CLE 3.1-CAN- xppm	→ 1-68
Total available bromine	Cooling water, waste water, swimming pool water, whirlpool water, bromine with BCDMH	0.01-10 mg/l	D1C, DAC	BCR 1-mA (replaces earlier type BRE 1)	→ 1-70
Total available bromine	Cooling water, swimming pool water, whirlpool water with organic or inorganic bromine compounds	0.02-10 mg/l	DULCOMARIN®	BRE 3-CAN-10 ppm	→ 1-71
Free and bound bromine	Cooling, industrial, waste water, water with higher pH values (stable); seawater	0.02-20 mg/l	D1C, DAC	CBR 1-mA-xppm	→ 1-61
Free + combined bromine	Cooling, industrial, waste water, water with higher pH values (stable); sea water	0.00-0 mg/l	D1C, DAC	CBR 1-mA-xppm	→ 1-62
Chlorine dioxide	Potable water	0.01-10 mg/l	D1C, DAC	CDE 2-mA-xppm	→ 1-74
Chlorine dioxide	Bottle washer systems	0.02-2 mg/l	D1C, DAC	CDP 1-mA	→ 1-75
Chlorine dioxide	Hot water up to 60 °C, cooling water, waste water, irrigation water	0.01-10 mg/l	D1C, DAC, DULCOMARIN®	CDR 1-mA-xppm, CDR 1-CAN-xppm	→ 1-76
Chlorite	Potable, wash water	0.02-2 mg/l	D1C, DAC, DULCOMARIN®	CLT 1-mA-xppm, CLT 1-CAN-xppm	→ 1-78
Ozone	Potable water, swimming pool water	0.02-2 mg/l	D1C, DAC	OZE 3-mA	→ 1-80
Ozone	Process, service or cooling water	0.02-2 mg/l	D1C, DAC	OZR 1-mA-2 ppm*	→ 1-81
Dissolved oxygen	Potable, surface water	2-20 mg/l	D1C, DAC	DO 1-mA-xppm	→ 1-82
Dissolved oxygen	Activated sludge tank, sewage treatment plants	0.1–10 mg/l	D1C, DAC	DO 2-mA-xppm	→ 1-83
Peracetic acid	CIP, antiseptic food filling process	1–2,000 mg/l	D1C, DAC	PAA 1-mA-xppm	→ 1-84
Hydrogen peroxide	Clear water, fast control	1–2,000 mg/l	DAC	PEROX sensor PEROX-H2.10 P	→ 1-86
Hydrogen peroxide	Process, swimming pool water	2–20,000 mg/l	D1C, DAC	PER1-mA-xppm	→ 1-86

1.3.2 **Sensors for Chlorine**

Different forms of dissolved chlorine are present in water:

Recommended sensors for Cl₂, HOCI (hypochlorous acid), Free (effective) chlorine:

OCI- (hypochlorite): Types CLE, CLO, CLB, CBR, reference method:

Combined chlorine: Mono-, di-, trichloroamine. The measuring result of type CLE (free

chlorine) is subtracted from the measurement result of type CTE

(total chlorine). Reference method: DPD4 minus DPD1 Total chlorine: Total of free and combined chlorine; recommended sensor: Type CTE,

reference method DPD4

Total available chlorine Chlorine bound to (iso)cyanic acid/isocyanurate and the free (effective) (organic combined chlorine):

chlorine resulting from it; recommended sensor: Type CGE, reference method DPD1

Applications: Chlorine measurement in potable, swimming pool, cooling, service,

process and waste water or water of comparable quality, as well as salt water/seawater with up to 15% chloride content. For chlorine measurements at high pH values (8...9.5), we recommend chlorine sensors CGE and CTE for total chlorine and total available chlorine. We recommend the sensor type CBR or the system for metering pH buffer solution into the sample water bypass (see Chapter 3.4) for measuring

free chlorine at high pH values

Unit connection: Do not use sensors CLE CLO, CLB and CBR in the presence of

isocyanuric acid/chlorine stabilisers! Types CLE 3.1, CBR, CTE and CGE 2 operate incorrectly when chlorinating using electrolysis processes without diaphragm. Sensors with the designation -mA are used for controllers D1Cb, DAC and DULCOMARIN®. Sensors with the designation -4P are used for the former WS controllers and for metering pumps with integral chlorine controllers. Sensors with the designation DMT are used for DMT transducers. Sensors with the designation CAN are used with the swimming pool controller DULCOMARIN®. Sensors CLB 1 and CLB 2 with the designation -µA do not have a signal transformer and function solely with the Compact Controller.

Selection Guide

		CLE 3/ [CLR 1]	CLE 3.1	CLO 1	CLO 2	CLB 2/ CLB 3	CBR 1	CGE 3	CTE 1	BCR 1
Measured variable	Free chlorine	x, [x]	Х	Х	х	Х	x 1)			
	Total available chlorine (cyanuric acid derivatives)							Х		
	Total chlorine								х	x ²⁾
Selectivity of free chlorine	Raised		Х				Х			
	Yes	x, [x]		Х	Х	Х		Х		
	No								Х	Х
Application	Public swimming pools	Х	Х	Х		(x)	Х	Х	x ³⁾	
	Private swimming pools	Х	X	Х		Х		Х	x ³⁾	x ⁴⁾
	Potable water	х	х		х	х	х		х	
	Cooling water						х			х
	Waste water	[x]					х		х	Х
Disinfectant	Chlorine gas, hypochlorite, electrolysis (with diaphragm)	x, [x]	Х	х	х	Х	Х	Х	Х	
	Electrolysis (without membrane)	x, ([x])		х	х	х		х		
	Chlorine-containing cyanuric acid derivatives							Х		
	BCDMH									Х
Specifications	Measuring range [ppm]	0.01-100, [10-200]	0.01-10	0.02-10	0.02-2	0.05-5	0.01-10	0.02-10	0.01-10	0.01-10
	pH range	5.5-8.0	5.5-8.0	5.0-9.0	5.0-9.0	5.0-9.0	5.0-9.5	5.5-9.5	5.5-9.5	5.0-9.5
	Temperature [°C]	5-45	5-45	5-45	5-70	5-45	5-45	5-45	5-45	5-45
	Max. pressure [bar]	1	1	8	8	3	1	3	3	1
Installation	Open outlet	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Direct installation in the circuit			х	х	х				

as well as free and combined bromine (see Chap. 1.3.6: "Bromine Sensors")

³⁾ in combination with the Sensor for Free Chlorine type CBR 1 for determining combined chlorine

²⁾ as well as total available bromine (see Chap. 1.3.6: "Bromine Sensors")

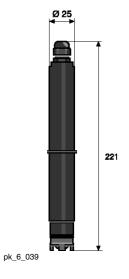
⁴⁾ and pools on cruise ships

ensor Technology DULCOTEST®

1.3 Amperometric Sensors DULCOTEST®

1.3.3

DULCOTEST® Sensors for Free Chlorine


Sensor for Free Chlorine CLE 3-mA

Standard sensor for measuring free chlorine in clear water. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water

Measured variablefree chlorineReference methodDPD1pH range5.5 ... 8.0Temperature5 ... 45 °CMax. pressure1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal $4...20 \text{ mA} \approx \text{measuring range, temperature-compensated,}$

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine, even if there is not an

excess of it

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants

with organic chlorine, e. g. based on cyanuric acid, are unsuitable

Installation Bypass: offener Auslass des Messwassers

Sensor fitting DGM, DLG III

Measuring and control

equipment
Typical applications

D1Cb, DAC, delta® solenoid-driven diaphragm metering pump

CLE 3-mA-0.5 ppm: potable water; CLE 3-mA-2.0/10 ppm: swimming pools (surfactant-free)

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
CLE 3-mA-0.5 ppm	0.010.5 mg/l	792927
CLE 3-mA-2 ppm	0.022.0 mg/l	792920
CLE 3-mA-5 ppm	0.055.0 mg/l	1033392
CLE 3-mA-10 ppm	0.1010.0 mg/l	792919
CLE 3-mA-20 ppm	0.2020.0 mg/l	1002964
CLE 3-mA-50 ppm	0.5050.0 mg/l	1020531
CLE 3-mA-100 ppm	1.00100.0 mg/l	1022786

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Sensor for Free Chlorine CLE 3.1-mA

221

pk_6_039

Sensor for the measurement of free chlorine in clear water with higher selectivity towards combined chlorine. For use on controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine, no cross sensitivity to combined chlorine (chloramines), even if there is an excess of it
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water

Measured variable Free chlorine (hypochlorous acid HOCI) with high levels of combined

chlorine; for determining the combined chlorine with a DAC controller

and sensor for total chlorine type CTE 1-mA

Reference method pH range 5.5 ... 8.0 **Temperature** 5 ... 45 °C Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III) Supply voltage 16...24 V DC (two-wire technology)

Output signal 4...20 mA ≈ measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine, even if there is an excess

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants

with organic chlorine, e. g. based on cyanuric acid, are unsuitable

Installation Bypass: offener Auslass des Messwassers

Sensor fitting DGM, DLG III

Measuring and control

Typical applications

equipment

D1Cb, DAC, delta® solenoid-driven diaphragm metering pump

Potable water with higher volumes of combined chlorineSwimming pools. To determine the combined chlorine from the difference:

Total chlorine minus free chlorine in the controller DAC

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle,

technology

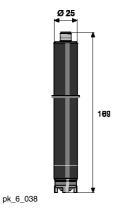
Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
CLE 3.1-mA-0.5 ppm	0.010.5 mg/l	1020530
CLE 3.1-mA-2 ppm	0.022.0 mg/l	1018369
CLE 3.1-mA-5 ppm	0.055.0 mg/l	1019398
CLE 3.1-mA-10 ppm	0.1010.0 mg/l	1018368

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Signal leads see Sensor Accessories, p. → 1-119


Sensor for Free Chlorine CLE 3-DMT

Standard sensor for measuring free chlorine in clear water. For operation on ProMinent transmitters type

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in

Measured variable free chlorine DPD1 Reference method pH range 5.5 ... 8.0 **Temperature** 5 ... 45 °C Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 3.3 V DC (5 P)

Output signal 0...1 V DC, uncalibrated, not temperature compensated, not

electrically isolated

Temperature measurement About the integrated Pt 1000. The temperature compensation is

carried out in DMT.

Free chlorine as against combined chlorine, even if there is not an Selectivity

excess of it

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants

with organic chlorine, e. g. based on cyanuric acid, are unsuitable

Bypass: offener Auslass des Messwassers Installation

DGM, DLG III Sensor fitting

Measuring and control DMT

equipment

Typical applications CLE 3-mA-0.5 ppm: potable water; CLE 3-mA-2.0/10 ppm: swimming

pools (surfactant-free)

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle,

technology

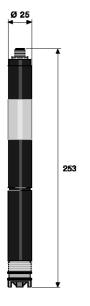
Amperometric, 2 electrodes, membrane-covered

	weasuring range	Order no.	
CLE 3-DMT-5 ppm	0.015.0 mg/l	1005511	
CLE 3-DMT-50 ppm	0.1050.0 mg/l	1005512	

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Signal leads see Sensor Accessories, p. → 1-119


Sensor for free chlorine CLE 3-CAN-P

Standard sensor for measuring free chlorine in clear water. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water
- Operation on the CAN-bus with all the associated benefits

pk_6_096

Measured variablefree chlorineReference methodDPD1pH range5.5 ... 8.0Temperature5 ... 45 °CMax. pressure1.0 bar

Intake flow 30...60 l/h (in the DGM or DLG III)
Supply voltage Via CAN interface (11 - 30 V)

Output signalUncalibrated, temperature compensated, electrically isolatedSelectivityFree chlorine as against combined chlorine, even if there is not an

excess of it

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants

with organic chlorine, e. g. based on cyanuric acid, are unsuitable

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control DULCOMARIN®

equipment

Typical applications Potable water, swimming pool water **Resistance to** Salts, acids, alkalis. Not surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

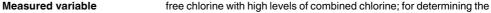
	Measuring range	Order no.
CLE 3-CAN-P-10 ppm	0.0110.0 mg/l	1083209

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Sensor for free chlorine CLE 3.1-CAN-P

253


Ø 25

pk_6_096

Sensor for the measurement of free chlorine in clear water with higher selectivity towards combined chlorine. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: free chlorine, no cross sensitivity to combined chlorine (chloramines) even if there is an excess of it
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in
- Operation on the CAN-bus with all the associated benefits

combined chlorine with a DULCOMARIN® 3 and sensor for total

chlorine type CTE 1-CAN

Reference method pH range 5.5 ... 8.0 5 ... 45 °C **Temperature** Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGMa or DLG III) Supply voltage Via CAN interface (11 - 30 V)

Output signal Uncalibrated, temperature compensated, electrically isolated

Free chlorine Selectivity

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, disinfectants

with organic chlorine, e. g. based on cyanuric acid, are unsuitable

Installation Bypass: open sample water outlet

DGM, DLG III Sensor fitting Measuring and control **DULCOMARIN®**

equipment

Potable water with higher percentages of combined chlorine; Typical applications

Swimming pool. To determine the combined chlorine from the difference: Total chlorine minus free chlorine in the controller

DULCOMARIN®

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

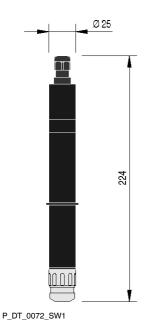
Order no.

Measuring range

CLE 3.1-CAN-P-10 ppm 0.01...10.0 mg/l 1083584

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.



Sensor for Free Chlorine CLO 1-mA

Sensor for the measurement of free chlorine in clear water even when using electrolysis processes for disinfection, up to 45 °C (1 bar) or 8 bar (25 °C). For use with controllers with 4-20 mA input

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Use with return of the sample water to the process line
- Use at higher pressures
- Minimisation of faults by electrolysis systems in which the electrodes are immersed directly into the sample water (without diaphragm) by open sensor (no diaphragm) and gold electrodes
- Measurement of free chlorine up to pH 9

Measured variable free chlorine Reference method DPD1 pH range 5.0 ... 9.0 **Temperature** 5 ... 45 °C Max. pressure 8.0 bar (25 °C)

Intake flow 30...60 l/h (in DGM or DLG III), constant flow as flow-dependent signal

16...24 V DC (2-wire) Supply voltage

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis

without diaphragm with electrodes in the process

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the tubes with the INLI fitting

D1Cb, DAC, delta® solenoid-driven diaphragm metering pump

Sensor fitting DLG up to 1 bar/55 °C; DGM up to 6 bar/30 °C; INLI up to 7 bar/40 °C

Measuring and control

equipment

Typical applications Swimming pools, uncontaminated potable water and industrial service

water, and can also be used together with diaphragm-free electrolysis processes. Can also be used in conjunction with hydrodynamic

cleaning even in contaminated water.

Resistance to surfactants

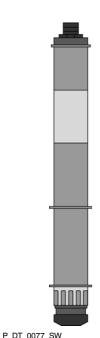
Measuring principle,

technology

Amperometric, 3 electrodes, without diaphragm

	Measuring range	Order no.
CLO 1-mA-2 ppm	0.022.0 mg/l	1033871
CLO 1-mA-10 ppm	0.1010.0 mg/l	1033870

Sensor for free chlorine CLO 1-CAN-P



Sensor for the measurement of free chlorine in clear water even when using electrolysis processes for disinfection, up to 45 °C (1 bar) or 8 bar (25 °C). For use on controllers with CAN-bus connection.

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Use with return of the sample water to the process line
- Use at higher pressures
- Minimisation of faults by electrolysis systems in which the electrodes are immersed directly into the sample water (without diaphragm) by open sensor (no diaphragm) and gold electrodes
- Measurement of free chlorine up to pH 9

Measured variable Free chlorine DPD1 Reference method 5.0 ... 9.0 pH range **Temperature** 5 ... 45 °C Max. pressure 8.0 bar (25 °C)

Intake flow 30...60 l/h (in DGM or DLG III), constant flow as flow-dependent signal

Supply voltage 11...30 V (via CAN interface)

Output signal digital (CANopen), uncalibrated, temperature-compensated,

galvanically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis

without diaphragm with electrodes in the process

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the tubes with the INLI fitting

Sensor fitting DLG up to 1 bar/55 °C; DGM up to 6 bar/30 °C; INLI up to 7 bar/40 °C

Measuring and control **DULCOMARIN®**

equipment

Typical applications Swimming pool,uncontaminated drinking water and process water,and

can also be used together with diaphragm-free electrolysis

processes. Can also be used in conjunction with hydrodynamic cleaning

even in contaminated water.

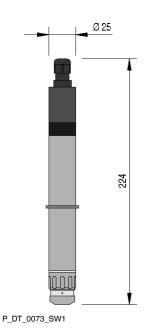
Resistance to Salts, acids, alkalis, surfactants, dirt films Amperometric, 3 electrodes, without diaphragm

Measuring principle, technology

Measuring range Order no.

CLO 1-CAN-P-10 ppm	0.1010.0 mg/l	1083134

1.1.2018 Product Catalogue 2018


Sensor for Free Chlorine CLO 2-mA

Sensor for the measurement of free chlorine in clear water even when using electrolysis processes for disinfection, up to 70 $^{\circ}$ C or 8 bar (25 $^{\circ}$ C). For use with controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Use with return of the sample water to the process line
- Use at higher pressures/temperatures
- Minimisation of faults by electrolysis systems in which the electrodes are immersed directly into the sample water (without diaphragm) by open sensor (no diaphragm) and gold electrodes
- Measurement of free chlorine up to pH 9

 Measured variable
 free chlorine

 Reference method
 DPD1

 pH range
 5.0 ... 9.0

 Temperature
 5 ... 70 °C

 Max. pressure
 8.0 bar (25 °C)

Intake flow 30...60 l/h (in DGM or DLG III), constant flow as flow-dependent signal

Supply voltage 16...24 V DC (2-wire)

Output signal 4...20 mA = Measuring range, temperature-compensated, uncalibrated,

not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis

without diaphragm with electrodes in the process

Installation Bypass: open outlet or return of the sample water into the process line,

inline: direct installation into the tubes with the INLI fitting

Sensor fitting DLG up to 1 bar/55 °C; DGM up to 1 bar/60 °C; INLI up to 2 bar/70 °C.

Prerequisite: constant flow

Measuring and control

equipment

D1Cb, DAC, delta® solenoid-driven diaphragm metering pump

Typical applications Hot water up to 70 °C, combating legionella, uncontaminated potable

water and industrial service water, can also be used together with

diaphragm-free electrolysis processes

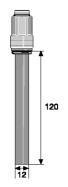
Resistance to surfactants

Measuring principle,

technology

Amperometric, 3 electrodes, without diaphragm

	Measuring range	Order no.
CLO 2-mA-2 ppm	0.022.0 mg/l	1033878


Sensor for Free Chlorine CLB 2-µA

Cost-effective, simple sensor for the measurement of free chlorine in clear water, even with a changing media temperature. Use even when electrolysis processes are used for disinfection at up to 45 °C/3 bar. For operation with the Compact controller DCCa

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Cost-effective due to its simple construction without separate wear parts
- Simple, cost-effective maintenance without handling of the diaphragm caps
- Minimisation of faults by electrolysis systems without diaphragm in which the electrodes are immersed directly into the sample water by an open sensor (no diaphragm)
- Measurement of free chlorine up to pH 9 and use at high pressure of up to 8 bar by the absence of a diaphragm

pk_6_095

Measured variable free chlorine

Measuring range 0.05 – 5.0 mg/l, can be used for short-term shock chlorination

up to 10 mg/l

DPD1 Reference method pH range 5.0 ... 9.0 **Temperature** 5 ... 45 °C 3 0 har Max. pressure

Intake flow 30...60 l/h (in DGMA), constant flow needed as flow-dependent signal

Supply voltage Only for compact controllers

Non-amplified primary current signal, not temperature-compensated, **Output signal**

uncalibrated, not electrically isolated

Temperature measurement Pt 1000, integrated, calculation in the compact controller

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis

without diaphragm with electrodes in the process

Installation Bypass: open sample water outlet, inline: direct installation into the

Sensor fitting Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis

without diaphragm with electrodes in the process

Electrical connection Fixed cable, 1 m, 6 wires with cable end sleeves

Measuring and control

equipment

Compact controller

Typical applications Swimming pools, potable water, can also be used with membrane-free

chlorine production electrolysis processes, even with varying media

Resistance to surfactants

Measuring principle,

technology

Amperometric, 3 electrodes, without diaphragm

	weasuring range	Oruei IIO.
CLB 2-µA-5 ppm	0.055.0 mg/l	1038902

1.1.2018 Product Catalogue 2018

Sensor for Free Chlorine CLB 3-µA

120

pk_6_095

Cost-effective, simple sensor for the measurement of free chlorine in clear water when the media temperature is constant. Use even when electrolysis processes are used for disinfection at up to 45 °C/3 bar. For operation with the Compact controller DCCa

Your benefits

- Measured variable: free chlorine, no significant cross sensitivity to combined chlorine (chloramines)
- Cost-effective due to its simple construction without separate wear parts
- Simple, cost-effective maintenance without handling of the diaphragm caps
- Minimisation of faults by electrolysis systems without diaphragm in which the electrodes are immersed directly into the sample water by an open sensor (no diaphragm)
- Measurement of free chlorine up to pH 9 and use at high pressure of up to 8 bar by the absence of a diaphragm

Measuring range 0.05 - 5.0 mg/l: linear, can be used for shock chlorination up

to 10.0 mg/l

Reference method DPD1 pH range 5.0 ... 9.0

Temperature 5 ... 45 °C constant temperature needed,

as temperature-dependent signal

Max. pressure

Intake flow 30...60 l/h (in DGMA), constant flow necessary, as flow-dependent

signal

Supply voltage Only for compact controllers

Output signal Non-amplified primary current signal, not temperature-compensated,

uncalibrated, not electrically isolated

Temperature measurement

None Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, electrolysis

without diaphragm with electrodes in the process

Installation Bypass: open sample water outlet, inline: direct installation into the

pipework; fixed or replaceable (replaceable fitting)

Sensor fitting DGM, DLG III

Electrical connection Fixed cable, 1 m, 4 wires with cable end sleeves

Measuring and control

equipment

Compact controller

Typical applications Swimming pools, potable water, can also be used with membrane-free

chlorine production electrolysis processes

Resistance to surfactants

Measuring principle, Amperometric, 3 electrodes, without diaphragm

technology

CLB 3-µA-5 ppm

Measuring range Order no. 0.05...5.0 mg/l 1041696

1.1.2018

Sensor for Free Chlorine CBR 1-mA

221

pk 6 040

Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use with controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

Measured variable free chlorine, free bromine, combined bromine, DBDMH

(1.3-dibrom-5,5-dimethyl-hydantoin)

Reference method DPD1 pH-range 5 ... 9.5 **Temperature** 5 ... 10 °C Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGM, DLG II) Supply voltage 16...24 V DC (2-wire)

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, bromide

+ hypochlorite, DBDMH

Installation Bypass: open sample water outlet

DGM, DLG III Sensor fitting

Measuring and control D1Cb, DAC, delta® solenoid-driven diaphragm metering pump

equipment

Typical applications

Cooling water, process water, waste water, Water with higher pH values (stable pH), contaminated swimming pool water. Raw water for

drinking water treatment. Rohwasser zur Trinkwasseraufbereitung.

Resistance to Salts, acids, alkalis, surfactants, dirt films

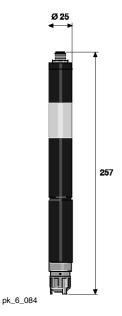
Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

	Measuring range	Order no.
CBR 1-mA-0.5 ppm	0.010.5 mg/l*	1038016
CBR 1-mA-2 ppm	0.022.0 mg/l*	1038015
CBR 1-mA-5 ppm	0.055.0 mg/l*	1052138
CBR 1-mA-10 ppm	0.1010.0 mg/l*	1038014

Measuring range based on chlorine. When measuring bromine, the lower and upper limit of the measuring range are increased by the factor 2.25, therefore for example CBR 1-mA-0.5ppm: 0.02 ...1.1 ppm.

Sensor for free and combined bromine CBR 1-CAN-P



Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use on controllers with CAN-bus connection.

Your benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

Measured variable free chlorine, free bromine, combined bromine, DBDMH

(1.3-dibrom-5,5-dimethyl-hydantoin)

Reference method DPD1 5 ... 9.5 pH-range **Temperature** 5 ... 45 °C 1.0 bar Max. pressure

Intake flow 30...60 l/h (in DGM, DLG II) Supply voltage 11...30 V DC (via CAN interface)

Output signal digital (CANopen), uncalibrated, temperature-compensated,

galvanically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, bromide

+ hypochlorite, DBDMH

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

Typical applications

D1C, DAC, delta® solenoid-driven metering pump equipment

> Cooling water, Process water, Waste water, Water with higher pH values (stable pH), contaminated swimming pool water. In swimming pools to determine the combined chlorine from the difference: Total chlorine minus free chlorine.Raw water for drinking water treatment

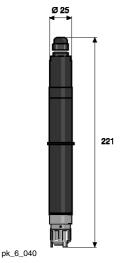
Resistance to Dirt films, biofilms, surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.	
CBR 1-CAN-P-10ppm		1083135	


Sensor for free chlorine CLR 1-mA

Sensor for free chlorine above 10 ppm in contaminated washing water for use with controllers with 4-20 mA input

Your benefits

- Measured variable free chlorine for high concentrations of up to 1,000 ppm
- Diaphragm-covered sensor prevents faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm

Measured variable free chlorine DPD1 Reference method pH range 5.5 ... 8.0 **Temperature** 5 ... 45 °C Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGM, DLG II) Supply voltage 16...24 V DC (2-wire)

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm

Installation Bypass: open sample water outlet

Sensor fitting

Measuring and control

Typical applications

equipment

Resistance to

D1Cb, DAC, delta® solenoid-driven diaphragm metering pump

Salad, vegetable and poultry washing water, contaminated process

and waste water

Measuring principle,

technology

Salts, acids, alkalis, surfactants, dirt films Amperometric, 2 electrodes, membrane-covered

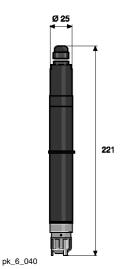
Measuring range Order no. CLR 1-mA-200 ppm 10.0...200 mg/l 1047978

Important note: Measuring range from 10.0 ... 1,000 mg/l on request

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

1.3.4

DULCOTEST® Sensors for Total Available Chlorine


Sensor for Total Available Chlorine CGE 3-mA

Sensor for total available chlorine, such as derivatives of chloro(iso)cyanuric acid trouble-free when disinfection is provided by electrolysis processes when used in swimming pools. For operation with controllers with 4-20 mA input

Your benefits

- Measured variable: total available chlorine, for instance disinfectant with organic chlorine, such as derivatives of chloro(iso)cyanuric acid
- Gold electrode to prevent faults by products from electrolysis processes where the electrodes are immersed directly into the sample water (without diaphragm)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in
- Hydrophilic diaphragm guarantees the permeability of chloro(iso)cyanuric acid derivatives towards the measuring electrodes
- The special reaction system of the electrolyte allows the total available chlorine to be determined and use at a high pH of up to 9.5

Measured variable Total available chlorine: Total of organic combined chlorine

(e.g. bound to cyanuric acid) and free chlorine

Reference method DPD1 pH range 5.5 ... 9.5 **Temperature** 5 ... 45 °C Max. pressure 3.0 bar

Intake flow 30...60 l/h (in DGM or DLG III) Supply voltage 16...24 V DC (2-wire system)

Output signal 4-20 mA ≈ Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Total available chlorine as against combined chlorine (chloramines) Disinfection process Disinfectants with organic chlorine, e.g. based on cyanuric acid

Installation Bypass: open sample water outlet

DGM, DLG III Sensor fitting

Measuring and control

equipment

D1C, DAC, delta® solenoid diaphragm metering pump

Swimming pool water, combined disinfection processes with chloro(iso)cyanuric acid derivatives and diaphragm-free electrolysis

Resistance to surfactants

Measuring principle,

Typical applications

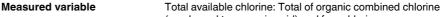
technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
CGE 3-mA-2 ppm	0.022.0 mg/l	1047959
CGE 3-mA-10 ppm	0.1010.0 mg/l	1047975

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Sensor for total available chlorine CGE 3-CAN-P



221

Sensor for total available chlorine, such as derivatives of chloro(iso)cyanuric acid when used in swimming pools. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: total available chlorine, for instance disinfectant with organic chlorine, such as derivatives of chloro(iso)cyanuric acid
- Gold electrode to prevent faults by products from electrolysis processes where the electrodes are immersed directly into the sample water (without diaphragm)
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or substances in the water
- Hydrophilic diaphragm guarantees the permeability of chloro(iso)cyanuric acid derivatives towards the measuring electrodes
- The special reaction system of the electrolyte allows the total available chlorine to be determined and use at a high pH of up to 9.5
- Operation on the CAN-bus with all the associated benefits

(e.g. bound to cyanuric acid) and free chlorine

DPD1 Reference method 5.5 ... 9.5 pH range **Temperature** 5 ... 45 °C Max. pressure 3.0 bar

30...60 l/h (in the DGM or DLG III) Intake flow Supply voltage Via CAN interface (11 – 30 V DC)

Output signal Uncalibrated, temperature-compensated, electrically isolated Selectivity Total available chlorine as against combined chlorine (chloramines) Disinfection process Disinfectants with organic chlorine, e.g. based on cyanuric acid

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III Measuring and control **DULCOMARIN®**

equipment

Typical applications Swimming pool water, Disinfection processes with chloro(iso)cyanuric

acid derivatives

Resistance to surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

CGE 3-CAN-P-10 ppm

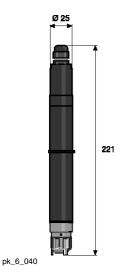
Measuring range Order no. 0.01...10.0 mg/l 1083211

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

pk_6_040

1.3.5

DULCOTEST® Sensors for Total Chlorine


Sensor for Total Chlorine CTE 1-mA

Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For use on controllers with mA input

Your benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl-), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5

Total chlorine Measured variable Reference method DPD4 pH range 5.5 ... 9.5 5 ... 45 °C **Temperature** 3.0 bar Max. pressure

Intake flow 30...60 l/h (in DGM or DLG III) Supply voltage 16...24 V DC (two-wire technology)

4...20 mA ≈ measuring range, temperature-compensated, **Output signal**

uncalibrated, not electrically isolated

Selectivity Non-selective, cross-sensitive towards many oxidation agents **Disinfection process** Chlorine gas, hypochlorite, electrolysis with diaphragm,

monochloramine

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control D1C, DAC, delta® solenoid-driven diaphragm metering pump

equipment

CTE 1-mA-0.5 ppm: Potable water; CTE 1-mA-2/5/10 ppm: Potable, industrial, process, waste water. In swimming pools combined with

CLE 3.1 to detect combined chlorine.

Resistance to

Measuring principle,

Typical applications

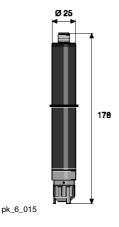
technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
CTE 1-mA-0.5 ppm	0.010.5 mg/l	740686
CTE 1-mA-2 ppm	0.022.0 mg/l	740685
CTE 1-mA-5 ppm	0.055.0 mg/l	1003203
CTE 1-mA-10 ppm	0.1010.0 mg/l	740684

Chlorine sensors complete with 50 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.


Sensor for Total Chlorine CTE 1-DMT

Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For operation with the transmitter DMT

Your benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl-), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5

Measured variable Total chlorine Reference method DPD4 5.5 ... 9.5 pH range **Temperature** 5 ... 45 °C Max. pressure 3.0 bar

30...60 l/h (in DGM or DLG III) Intake flow

Supply voltage 3.3 V DC (5 P)

Output signal Uncalibrated, not temperature-compensated, not electrically isolated Selectivity Non-selective, cross-sensitive towards many oxidation agents Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm,

monochloramine

Installation Bypass: open sample water outlet

DGM, DLG III Sensor fitting

Measuring and control

CTE 1-DMT-10 ppm

equipment

DMT

Typical applications Potable, industrial, process, waste water

Resistance to surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered


technology

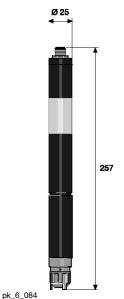
Measuring range	Order no.
0.0110.0 mg/l	1007540

Chlorine sensors complete with 50 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

Signal leads see Sensor Accessories, p. → 1-119

Sensor for total chlorine CTE 1-CAN-P



Sensor for total chlorine, including, for example, free chlorine, chloramines etc. even with high pH values in different kinds of water. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: Total chlorine, chlorine compounds, in which chlorine acts as an oxidising agent, e.g. free chlorine (HOCl and OCl), chloramines etc.
- Diaphragm-covered sensor (encapsulated) prevents faults caused by changing flow or ingredients in the water
- Hydrophilic diaphragm guarantees permeability for different water-soluble oxidising agents towards the measuring electrodes
- The special reaction system of the electrolyte allows components containing oxidising chlorine to be determined and used at a high pH of up to 9.5
- Operation on the CAN-bus with all the associated benefits

Sensor for connection to a CAN interface (e.g. DULCOMARIN® 3 swimming pool controller)

Measured variableTotal chlorineReference methodDPD4pH range5.5 ... 9.5Temperature5 ... 45 °CMax. pressure3.0 bar

Intake flow 30...60 l/h (in DGMa or DLG III)
Supply voltage Via CAN interface (11 - 30 V)

 Output signal
 Uncalibrated, temperature-compensated, electrically isolated

 Selectivity
 Non-selective, cross-sensitive towards many oxidation agents

 Disinfection process
 Chlorine gas, hypochlorite, electrolysis with diaphragm,

monochloramine

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control DULCOMARIN®

Measuring and control DULCOMARII
equipment

Typical applicationsPotable, industrial, process, waste water. In swimming pools

combined with CLE 3.1 to detect combined chlorine.

Resistance to surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

	Measuring range	Order no.
CTE 1-CAN-P-10 ppm	0.0110.0 mg/l	1083210

Chlorine sensors complete with 100 ml of electrolyte

A mounting kit, order no. 815079, is required for initial fitting of the chlorine sensors in the in-line probe housing DLG III.

1.3.6 DULCOTEST® Sensors for Bromine

Bromination agents

The following stabilised bromination agents are frequently used for disinfection during water treatment:

- BCDMH (1-Bromo-3-Chloro-5,5-Dimethyl-Hydantoin), marketed under trade names such as Brom-Sticks®
- DBDMH (1.3-Dibromo-5,5-Dimethyl-Hydantoin) marketed under trade names such as Albrom 100[®]
- N-bromamide sulfonate

These bromination agents are initially available as solids (tablets, sticks, pellets) and are transferred via "bromine chutes" into a saturated aqueous solution, that contains the free bromine (HOBr, OBr) and the carrier molecule. The free bromine and the halogen (bromine, chlorine) still available in the carrier molecule is jointly referred to as "Total available bromine". This solution is metered during the process.

Free bromine is generated directly without a carrier by metering of sodium-calcium hypochlorite + acid + sodium bromide, e.g. the Acti-Brom® process (Nalco company) or through the metering of sodium-calcium hypochlorite into seawater (bromide containing).

Bromamines are designated as combined bromine, which are more reactive when compared with chloramines (combined chlorine).

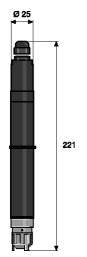
Applications

Typical applications are in swimming pools, whirlpools, seawater and cooling circuits. Particular attention must be paid to the quality of the sample water in cooling circuits and, where necessary, compatibility with other chemicals used (e.g. corrosion inhibitors) must be checked.

The photometric DPD measurement method recommends itself as a comparison method (e.g. with DT 1B), calculated and displayed as bromine. If the photometric DPD measurement for "chlorine" is used, the measured value must be multiplied by a factor of 2.25 for conversion into "bromine".

Sensor selection

- The sensor type BCR 1 and its calibration/checking using the DPD4 method, is recommended for the measurement of stabilised bromination agents, such as BCDMH and N-bromamide sulfonate.
- The sensor type CBR 1 and its calibration/checking using the DPD1 method, is recommended for the measurement of free bromine from sodium-calcium hypochlorite and bromide or of free bromine from DBDMH (solely splits off free bromine), or of bromine compounds, which are produced during disinfection (using sodium-calcium hypochlorite or ozone) of seawater. The CBR 1 can likewise be used to measure combined bromine (bromamines), calibrated and checked using the DPD1 method.
- It is essential that the sensor type BRE 3-CAN, calibrated and checked using the DPD4 method, is used to measure bromination agents using the measuring and control system DULCOMARIN®.


Sensor for Total Available Bromine BCR 1-mA (Replaces Earlier Type BRE 1)

Sensor for the disinfectant BCDMH and other oxidative-acting bromine-organic disinfectants and total chlorine even in contaminated water and/or for high pH values of up to 9.5. For use on controllers with mA input

Your benefits

- Measured variable: total available bromine from BCDMH (1-bromo-3-chloro-5,5-dimethylhydantoin)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water,
 N-bromamide sulfonate
- Resistance to blocking is achieved by the use of an electrolyte with an antimicrobial effect (less blocking by biofilms) and by a large-pored diaphragm (less blocking by solid particles/dirt)
- Use with high pH values by optimisation of the electrolyte diaphragm system

pk_6_040

Measured variable Total available bromine from BCDMH (1-bromo-3-chloro-5,5-dimethylhydantoin) and N-bromamido-sulphonate, total chlorine

DPD4

 Reference method
 DPD4

 pH range
 5.0 ... 9.5

 Temperature
 5 ... 45 °C

 Max. pressure
 1.0 bar

Intake flow 30...60 l/h (in DGM, DLG III)
Supply voltage 16...24 V DC (two wire)

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity

Non-selective, cross-sensitive towards many oxidation agents

Disinfection process

BCDMH (1-bromo-3-chloro-5,5-dimethyl-hydantoin), N-bromamide

sulfonate

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control D1C, D2C, DAC

equipment

Typical applications Cooling water, process water, waste water, Swimming pool water,

water with higher pH values (stable pH)

Resistance to Dirt films, biofilms, surfactants

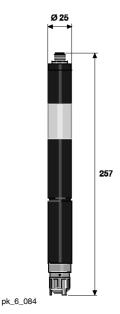
Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

Measuring range Order no.

	5 5	
BCR 1-mA-0.5 ppm	0.010.5 mg/l	1041697
BCR 1-mA-2 ppm	0.022.0 mg/l	1040115
BCR 1-mA-10 ppm	0.1010.0 mg/l	1041698

Sensor for Total Available Bromine BRE 3-CAN-P



Sensor for free and combined bromine, also for use with slightly contaminated water. For use on controllers with CAN-bus connection

Your benefits

- Measured variable: total available bromine from BCDMH and other oxidative-acting bromine organic disinfectants
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Use with high pH values by optimisation of the electrolyte diaphragm system
- Operation on the CAN-bus with all the associated benefits

Sensor for connection to a CAN interface (e.g. DULCOMARIN® 3 swimming pool controller)

Measured variable Total available bromine

Reference method For DBDMH, free bromine: DPD1.For BCDMH: DPD4

pH dependence If the pH changes from pH 7 to pH 8, the sensor sensitivity is reduced a) in the case of DBDMH and free bromine by approx. 10%

b) in the case of BCDMH by approx. 25%

Temperature 5 ... 45 °C Max. pressure 3.0 bar

Intake flow 30...60 l/h (in DGM or DLG III) Supply voltage Via CAN interface (11 – 30 V) **Output signal**

Uncalibrated, temperature-compensated, electrically isolated Selectivity Non-selective, cross-sensitive towards many oxidation agents **Disinfection process** DBDMH (1.3-dibromo-5,5-dimethyl-hydantoin), BCDMH (1-bromo-3-chloro-5,5-dimethyl-hydantoin), free bromine

(HOBr, OBr)

Installation Bypass: open sample water outlet

Sensor fitting Non-selective, cross-sensitive towards many oxidation agents

DULCOMARIN® 3

Measuring and control

equipment

Typical applications swimming pools/whirlpools

Resistance to surfactants

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
BRE 3-CAN-10 ppm	0.0210.0 mg/l	1083573

Note: a mounting kit (order no. 815079) is required for initial fitting of the bromine sensors in the in-line probe housing DLG III.

Signal leads see Sensor Accessories, page → 1-119

pk_6_040

1.3 Amperometric Sensors DULCOTEST®

Sensor for Free and Combined Bromine CBR 1-mA (Replaces Earlier Type **BRE 2)**

Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use with controllers with 4-20 mA input

Your benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

Measured variable free chlorine, free bromine, combined bromine, DBDMH

(1.3-dibrom-5,5-dimethyl-hydantoin)

Reference method pH dependence

5 ... 45 °C **Temperature** 1.0 bar Max. pressure

30...60 l/h (in DGM, DLG II) Intake flow Supply voltage 16...24 V DC (2-wire)

Output signal 4...20 mA = Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Free chlorine as against combined chlorine

DPD1

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, bromide

+ hypochlorite, DBDMH

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control

D1Cb, DAC, delta® solenoid-driven diaphragm metering pump equipment

Typical applications Cooling water, process water, waste water, Water with higher pH

values (stable pH), contaminated swimming pool water. Raw water for

drinking water treatment.

Resistance to Salts, acids, alkalis, surfactants, dirt films Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

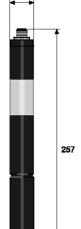
	Measuring range	Order no.
CBR 1-mA-0.5 ppm	0.010.5 mg/l*	1038016
CBR 1-mA-2 ppm	0.022.0 mg/l*	1038015
CBR 1-mA-5 ppm	0.055.0 mg/l*	1052138
CBR 1-mA-10 ppm	0.1010.0 mg/l*	1038014

Measuring range based on chlorine. When measuring bromine, the lower and upper limit of the measuring range are increased by the factor 2.25, therefore for example CBR 1-mA-0.5ppm: 0.02 ...1.1 ppm.

sor Technology DULCOTEST®

1.3 Amperometric Sensors DULCOTEST®

Sensor for free and combined bromine BRE 1-CAN-P



Sensor for free chlorine and bromine in contaminated water, also suitable for high pH values of up to 9.5. For use on controllers with CAN-bus connection.

Your benefits

- Measured variable: free chlorine as well as free and combined bromine (bromamines)
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt and biofilms by electrolyte with antimicrobial effect and large-pore diaphragm
- Use at high pH value of up to 9.5 by optimisation of the electrolyte diaphragm system

pk_6_084

Measured variable free chlorine, free bromine, combined bromine, DBDMH

(1.3-dibrom-5,5-dimethyl-hydantoin)

 Reference method
 DPD1

 pH range
 5.0 ... 9.5

 Temperature
 5 ... 45 °C

 Max. pressure
 1.0 bar

Intake flow 30...60 l/h (in DGM, DLG II)
Supply voltage 11...30 V DC (via CAN interface)

Output signal digital (CANopen), uncalibrated, temperature-compensated,

galvanically isolated

Selectivity Free chlorine as against combined chlorine

Disinfection process Chlorine gas, hypochlorite, electrolysis with diaphragm, bromide

+ hypochlorite, DBDMH

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III

Measuring and control D1C, DAC, delta® solenoid-driven metering pump

equipment

Typical applications Cooling water, Process water, Waste water, Water with higher pH

values (stable pH),contaminated swimming pool water. In swimming pools to determine the combined chlorine from the difference: Total chlorine minus free chlorine.Raw water for drinking water treatment

Resistance to Dirt films, biofilms, surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

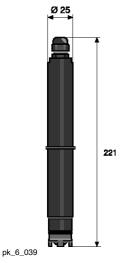
imperemente, 2 dieditodes, membrane severed

	Measuring range	Order no.	
CBR 1-CAN-P-10ppm		1083135	

1.1.2018 Product Catalogue 2018 1-

1.3.7 **DULCOTEST® Sensors for Chlorine Dioxide**

Sensor type		CDE 2-mA	CDP 1-mA	CDR 1-mA
Application		Potable water	Bottle washer system	Cooling water, waste water, agriculture, hot water
Measuring range		0.01-10.0	0.02-2.00	0.01-10.0
Temperature	°C	5 45	10 45	1 55
Temperature compensation		internal	external	internal
Max. pressure	bar	1.0	3.0	3.0
pH range		4.0 11.0	5.5 10.5	1.0 10.0
Response time	s	120	60	180
Run-in time	h	2-6	4-12	2-6
Surfactant-resistance		no	yes	yes
Contamination resistance		no	under certain conditions	under certain conditions
Cross sensitivity		Ozone	Ozone, chlorine	Ozone


Chlorine Dioxide Sensor CDE 2-mA

Standard sensor for the measurement of chlorine dioxide without cross-sensitivity by free chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide, no cross-sensitivity towards free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water

Measured variable Chlorine dioxide (CIO₂) Reference method DPD1 pH range 4.0 ... 11.0 CIO₂ stability range **Cross sensitivity** Ozone **Temperature** 5 ... 45 °C Max. pressure 1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III) Supply voltage 16...24 V DC (two-wire technology)

4...20 mA ≈ measuring range, temperature-compensated, **Output signal**

uncalibrated, not electrically isolated

Response time sensor t₉₀

Selectivity Chlorine dioxide selective towards free chlorine, chlorite and chlorate

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III Measuring and control D1C, DAC

equipment

Typical applications Uncontaminated drinking water (surfactant-free)

Resistance to Salts, acids, alkalis. Not surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

	Measuring range	Order no.
CDE 2-mA-0.5 ppm	0.010.5 mg/l	792930
CDE 2-mA-2 ppm	0.022.0 mg/l	792929
CDE 2-mA-10 ppm	0.1010.0 mg/l	792928

Chlorine dioxide sensors complete with 100 ml of electrolyte

Note: a mounting kit (order no. 815079) is required for initial fitting of the chlorine dioxide sensors in the inline probe housing DLG III.

Chlorine Dioxide Sensor CDP 1-mA

230

pk_6_047

Sensor for the measurement of chlorine dioxide with a fast response time, for example in bottle-washing systems. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide without interference caused by surfactants
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Fast response time through open-pored diaphragm and external temperature measurement

Measured variable Chlorine dioxide (CIO₂)

Reference method DPD1 pH range 5.5 ... 10.5 Ozone, chlorine **Cross sensitivity Temperature** 10 ... 45 °C 3.0 bar Max. pressure Intake flow 30...60 l/h

16...24 V DC (two-wire technology) Supply voltage

Output signal 4...20 mA ≈ measuring range, not temperature-compensated,

uncalibrated, not electrically isolated

Temperature measurement Separate temperature measurement needed for compensation

Response time sensor t₉₀

Selectivity Chlorite, Chlorate, Free chlorine Installation Bypass: open sample water outlet

Sensor fitting ProMinent recommends installing the sensor in the DLG II in-line probe fitting with upstream flow monitoring together with a Pt 100 temperature $\,$

Measuring and control

equipment

D1C and DACa with automatic temperature correction only

Typical applications Process water containing surfactants (bottle washing machines)

Resistance to Surfactants, slight films of dirt

Measuring principle, technology

Amperometric, 2 electrodes, membrane-covered

	weasuring range	Order no.
CDP 1-mA-2 ppm	0.022.0 mg/l	1002149

Chlorine dioxide sensors complete with 100 ml of electrolyte

Note: a mounting kit (order no. 815079) is required for initial fitting of the chlorine dioxide sensors in the inline probe housing DLG III.

Chlorine Dioxide Sensor CDR 1-mA

Sensor for the measurement of chlorine dioxide for all kinds of water, including hot and contaminated water. Without cross-sensitivity by free chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide, without cross-sensitivity towards free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm
- Operating temperature up to 60 °C (short term) by appropriate sensor materials

Measured variable Chlorine dioxide (CIO₂)

Reference method DPD1

pH range 1.0 ... 10.0 Cross sensitivity Ozone

Temperature1 ... 55 °C (short-term period 60 °C)Max. pressure3.0 bar, (30°C, in the DGMa)Intake flow30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC

Output signal 4...20 mA Temperature-compensated, uncalibrated, not electrically

isolated 3 min.

 $\begin{tabular}{lll} Response time sensor t_{90} & 3 min. \\ Selectivity & Chlorite \\ \end{tabular}$

Installation Bypass: open sample water outlet

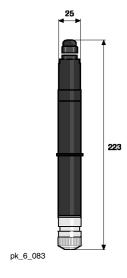
Sensor fitting DGMa/DLGIII
Measuring and control equipment D1C, DAC

Typical applications Contaminated industrial, process water, containing surfactants,

cooling water, irrigation water, slightly contaminated waste water,

warm wate

Resistance to Surfactants, slight films of dirt, water-soluble chemicals, solids/dirt,


biofilms

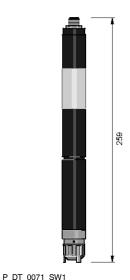
Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

	Measuring range	Oraer no.
CDR 1-mA-0.5 ppm	0.010.5 mg/l	1033762
CDR 1-mA-2 ppm	0.022.0 mg/l	1033393
CDR 1-mA-10 ppm	0.1010.0 mg/l	1033404

Note: a mounting kit (order no. 815079) is required for initial fitting of the chlorine dioxide sensors in the inline probe housing DLG III.

Chlorine Dioxide Sensor CDR 1-CAN



Sensor for the measurement of chlorine dioxide for all kinds of water, including hot and contaminated water. Without cross-sensitivity by free chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Chlorine dioxide, without cross sensitivity to free chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm
- Operating temperature up to 60 °C (short term) by appropriate sensor materials
- Operation on the CAN-bus with all the associated benefits

Sensors for connection to a CAN interface (e.g. Disinfection Controller)

Measured variable Chlorine dioxide (CIO₂)

Reference method DPD1 pH range 1.0 ... 10.0 **Cross sensitivity** Ozone **Temperature** 5 ... 45 °C Max. pressure 1.0 bar

30...60 l/h (in DGM or DLG III) Intake flow Via CAN interface (11-30 V) Supply voltage

Output signal Uncalibrated, temperature-compensated, electrically isolated

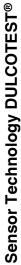
Response time sensor t₉₀

Selectivity Chlorite, Chlorate, Free chlorine Installation Bypass: open sample water outlet

Sensor fitting DGMa/DLGIII Measuring and control DULCOMARIN® 3 equipment

Typical applications Contaminated industrial, process water, containing surfactants, cooling water, irrigation water, slightly contaminated waste water

Surfactants, water-soluble pollutants, solids/dirt, biofilms


Resistance to Amperometric, 2 electrodes, membrane-covered

Measuring principle, technology

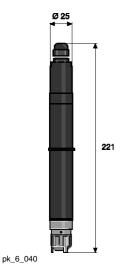
Measuring range Order no.

1041155 CDR 1-CAN-10 ppm 0.01...10.0 mg/l

Complete with 100 ml of electrolyte, connecting cable - CAN M12 5-pin 0.5 m, T-distributor M12 5-pin CAN

1.3.8

DULCOTEST® Sensors for Chlorite


Chlorite Sensor, CLT 1-mA

Sensor for monitoring the disinfection by-product chlorite in compliance with potable water regulations. Without cross-sensitivity towards chlorine dioxide, chlorate and chlorine. For operation on controllers with 4-20 mA input

Your benefits

- Online monitoring of the disinfection by-product chlorite
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- No interference by chlorine dioxide/chlorine/chlorate
- Online monitoring improves process reliability
- Online monitoring replaces expensive laboratory analysis

Measured variable Chlorite anion (ClO₂⁻)

Reference method DPD method, chlorite in the presence of chlorine dioxide

pH range 6.5 ... 9.5

Cross sensitivity reducing chemicals, e. g. Fe²⁺, Mn²⁺

Temperature 1 ... 40 °C **Max. pressure** 1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal 4...20 mA ≈ measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Chlorite selective towards chlorine dioxide, chlorate and free chlorine

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III
Measuring and control D1C, DAC

equipment

Typical applicationsMonitoring of chlorine dioxide treated potable water or similar water.

The selective measurement of chlorite alongside chlorine dioxide,

chlorine and chlorate is possible.

Resistance to surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

	Measuring range	Order no.
CLT 1-mA-0.5 ppm	0.020.5 mg/l	1021596
CLT 1-mA-2 ppm	0.102.0 mg/l	1021595

Chlorite sensors complete with 50 ml of electrolyte.

Note: A mounting kit (order no. 815079) is required for initial fitting of the chlorite sensors in the in-line probe housing DLG III.

The DT4 photometer is recommended for calibration of the chlorite sensor.

Chlorite Sensor CLT 1-CAN

257

P DT 0070 SW1

Sensor for monitoring the disinfection by-product chlorite in compliance with potable water regulations. Without cross-sensitivity towards chlorine dioxide, chlorate and chlorine. For use on controllers with **CAN-bus** connection

Your benefits

- Online monitoring of the disinfection by-product chlorite
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- No interference by chlorine dioxide/chlorine/chlorate
- Online monitoring improves process reliability
- Online monitoring replaces expensive laboratory analysis
- Operation on the CAN-bus with all the associated benefits

Sensors for connection to a CAN interface (e.g. Disinfection Controller)

Measured variable Chlorite anion (ClO₂-)

DPD method, chlorite together with chlorine dioxide Reference method

pH range

Cross sensitivity reducing chemicals, e. g. Fe²⁺, Mn²⁺

1 ... 40 °C **Temperature** 1.0 bar Max. pressure

Intake flow 30...60 l/h (in DGM or DLG III) Supply voltage Via CAN interface (11-30 V)

Output signal Uncalibrated, temperature-compensated, electrically isolated

Response time sensor t₉₀

Chlorite selective towards chlorine dioxide, chlorate and free chlorine Selectivity

Installation Bypass: open sample water outlet

Parts number/Identity code

Measuring and control

equipment

DGM, DLG III **DULCOMARIN® 3**

Typical applications Monitoring of potable water or similar water treated with chlorine

dioxide. Selective measurement of chlorite and chlorine dioxide,

chlorine and chlorate is also possible.

Resistance to surfactants


Measuring principle,

technology

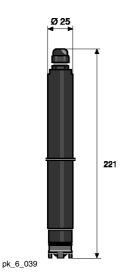
Amperometric, 2 electrodes, membrane-covered

Order no. Measuring range CLT 1-CAN-2 ppm 0.05...2.0 mg/l 1041156

Complete with 100 ml of electrolyte, connecting cable - CAN M12 5-pin 0.5 m, T-distributor M12 5-pin CAN

1.3.9

DULCOTEST® Sensors for Ozone


Ozone sensor OZE 3-mA

Standard sensor for measuring ozone in clear water. For operation on controllers with 4-20 mA input

Your benefits

- Measured variable: Ozone, without cross sensitivity to chlorine, hydrogen peroxide
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water

Measured variable Ozone (O₃)
Reference method DPD4

pH range 4.0 ... 11.0 Ozone stability range

Cross sensitivityChlorine dioxideTemperature5 ... 40 °CMax. pressure1.0 bar

Intake flow 30...60 l/h (in DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal 4...20 mA ≈ measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Selectivity Ozone as against free chlorine, combined chlorine, hydrogen peroxide

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III
Measuring and control D1C, DAC

equipment

Typical applications Potable water and swimming pool water **Resistance to** Salts, acids, alkalis. Not surfactants

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

	Measuring range	Order no.
OZE 3-mA-2 ppm	0.022.0 mg/l	792957

Ozone sensor complete with 100 ml of electrolyte.

Note: A mounting kit (order no. 815079) is required for initial fitting of the ozone sensors in the in-line probe housing DLG III.

Ozone sensor OZR 1-mA

221

Ø 25

pk_6_039

Sensor for measuring and monitoring the absence of ozone, also suitable for use in contaminated water. For operation on controllers with 4-20 mA input

- Measured variable: Ozone, without cross sensitivity to chlorine, hydrogen peroxide
- Diaphragm-covered sensor (encapsulated) minimises faults caused by changing flow or ingredients in the water
- Suitable also for monitoring the absence of ozone (rupture monitoring on filters) and for discontinuous ozone treatment processes
- Resistance to films of dirt by pore-free diaphragm

Measured variable Ozone (O₃) DPD4 Reference method

pH range 4.0 ... 11.0 Stability range of ozone

Cross sensitivity chlorine dioxide, peracetic acid, bromine, bromamine

5 ... 40 °C **Temperature** 1.0 bar Max. pressure

Intake flow 30...60 l/h (in the DGM or DLG III) Supply voltage 16...24 V DC (two-wire system)

Output signal 4...20 mA ≈ Measuring range, temperature-compensated,

uncalibrated, not electrically isolated

Response time t_{90} after 1 month <210s

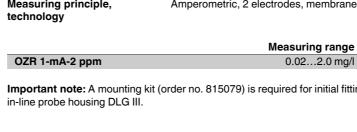
with 0 ppm ozone

Selectivity Non-selective

Installation Bypass: open sample water outlet

Sensor fitting DGM, DLG III Measuring and control D1C, DAC

equipment


Typical applications Potable water, swimming pool water, Process, service or cooling

water, monitoring the ozone breakdown of filters

Resistance to Salts, acids, alkalis, surfactants, dirt films Measuring principle, Amperometric, 2 electrodes, membrane-covered

Order no. 0.02...2.0 mg/l 1051647

Important note: A mounting kit (order no. 815079) is required for initial fitting of the ozone sensors in the

pk 6 050 1

pk_6_011

1.3 Amperometric Sensors DULCOTEST®

1.3.10

DULCOTEST® Sensors for Dissolved Oxygen

The measured variable "Dissolved oxygen" indicates the volume of gaseous oxygen physically dissolved in the agueous phase in mg/l (ppm).

"Dissolved oxygen" is therefore an important parameter for assessing the quality of surface water and water that has to be treated for the breeding of livestock with the addition of oxygen. Dissolved oxygen is also used for controlling processes in clarification plants and waterworks.

The following sensors are assigned to the different applications and can be offered separately as 4 - 20 mA encoders to central controls or as a decentralised solution along with D1C and DAC (measured variable: "Dissolved oxygen": X).

Oxygen Sensor DO 1-mA

Sensor for the measurement of the dissolved oxygen above 2 ppm to oxygen saturation. For installation in standard immersion pipes or in the bypass line. Use in waterworks, in fish breeding or to monitor surface water

Your benefits

- Measured variable: dissolved oxygen, no interference by turbidity or discolouration by the amperometric measuring principle
- Rod-shaped construction for simple installation into standard immersion pipes and bypass lines
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Minimal maintenance and long service life due to encapsulated transducer (easily replaceable thanks to bayonet fitting)
- Measuring electrodes protected by pore-free, dirt-repellent diaphragm
- Long service life of the electrolyte at high oxygen concentrations through optimised membrane thickness

Dissolved oxygen

Of oxygen in air

Stable zero point by means of large diaphragm-covered electrodes

110 s 0 ... 50 °C

thickness
Stable zero point by means of le

Measured variable
Calibration
Measuring accuracy
Response time sensor t₉₀
Temperature
Max. pressure

Intake flow
Supply voltage
Electrical connection
Intake flow
Minimum: 0.05 m/s
12...30 V DC
Fixed lead, 10 m

 Output signal
 4...20 mA ≈ measuring range, calibrated, temperature-compensated

±0.5% relative to final value of measuring range

and electrically isolated

Enclosure rating
Measuring and control

trol D1Cb, DAC

IP 68

equipment

(see accessories)
b) Immersion with immersion pipe

Process integration

In Immersion pipe with 50 mm outside diameter and 1-1/4 inch internal thread (provided by the customer). The connection is possible.

a) Immersion, suspended on cable with or without cable bracket

- via an immersion pipe adapter (see accessories).

 2. PVC immersion pipe with 50 mm outside diameter (provided by the customer). The connection is made by adhesion via a standard PVC union (provided by the customer).
- c) In-flow operation on request

Fish and shrimp farming, conditioning of water in large aquaria in zoological parks, control of the oxygen input in waterworks, appraisal

of the biological status of surface waters.

Resistance to Ingredients in the water, dirt films

D1Cb. DAC

leasuring principle, Amperometric, 2 electrodes, membrane-covered, encapsulated transducer

Measuring and control equipment Typical applications

Measuring principle, technology

 Measuring range
 Order no.

 DO 1-mA-20 ppm
 2.00...20.0 mg/l
 1020532

Note: Will be replaced like for like from 2nd guarter of 2018.

Oxygen Sensor DO 2-mA

Sensor for the measurement of the dissolved oxygen, specifically optimised for control above 0.1 ppm in the aeration tanks of clarification plants. Integrated in a floating ball with a cleaning function

Your benefits

260 mm

pk_6_051

- Measured variable: dissolved oxygen, no interference by turbidity or discolouration by the amperometric measuring principle
- Integration of the encapsulated transducer in a specially-shaped floating ball., creating a Venturi flow, which helps to clean the sensor membrane
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Minimal maintenance and long service life due to encapsulated transducer (easily replaceable thanks to bayonet fitting)
- Measuring electrodes protected by pore-free, dirt-repellent diaphragm
- Long service life of the electrolyte at low to medium oxygen concentrations, as occur in the aeration tanks of clarification plants, by means of optimised membrane thickness
- Stable zero point by means of large diaphragm-covered electrodes

Measured variableDissolved oxygenCalibrationOf oxygen in air

Measuring accuracy ±0.5% relative to final value of measuring range

 $\begin{tabular}{lll} \mbox{Response time sensor t_{90}} & 22 \, \mbox{s} \\ \mbox{Temperature} & 0 \dots 50 \, \mbox{°C} \\ \mbox{Max. pressure} & 1.0 \, \mbox{bar} \\ \end{tabular}$

Intake flowMinimum: 0.05 m/sSupply voltage12...30 V DCElectrical connectionFixed lead, 10 m

Output signal 4...20 mA measuring range calibrated, temperature-corrected and

electrically isolated

Enclosure rating IP 68

Measuring and control D1Cb, DAC

equipment

Process integration As a float with venturi grooves to increase the flow of sample water for the

self-cleaning of the sensor part.

Supplied with adapter for connection to PVC pipes with outside diameter: 50 mm and railing bracket, also for PVC pipes with outside diameter: 50 mm (see accessories).

The customer must provide the straight PVC tube and a 45 $^{\circ}$ standard

elbow for gluing to PVC pipes (outside diameter 50 mm).

Measuring and control

equipment

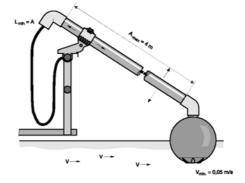
D1Cb, DAC

Typical applications

Control of the oxygen input in activated sludge pools (sewage plant)

for the purpose of energy conservation.

Resistance to Ingredients in the water, dirt films


Measuring principle, Amperometric, 2 electrodes, membrane-covered, encapsulated

technology transducer integrated in ball float

For further information: Installation Fittings / Adapters see page \rightarrow 1-132

 Measuring range
 Order no.

 DO 2-mA-10 ppm
 0.10...10.0 mg/l
 1020533

pk_6_012

Note: Will be replaced like for like from 2nd guarter of 2018.

pk_6_083

1.3 Amperometric Sensors DULCOTEST®

1.3.11

DULCOTEST® Sensors for Peracetic Acid

DULCOTEST® sensors of type PAA 1 are diaphragm-covered, amperometric 2-electrode sensors for the selective measurement of peracetic acid. Peracetic acid is particularly used in the food and beverage industry, but also for disinfection in the cosmetics, pharmaceutical and medical sectors. The continuous measurement and control of peracetic acid is therefore required when there are high demands in terms of disinfection and quality assurance. Commissioning and maintenance are significantly simplified. The sensor can also be used where there are surfactants.

Peracetic Acid Sensor PAA 1-mA

223

Sensor for the measurement of peracetic acid without cross-sensitivity towards hydrogen peroxide. For use in contaminated washing and waste water

Your benefits

- Measured variable: Peracetic acid, without cross-sensitivity towards the accompanying chemical, hydrogen peroxide
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm

 Measured variable
 Peracetic acid

 Reference method
 Titration

 pH range
 1.0 ... 9.0 (peracetic acid stability range)

 Cross sensitivity
 Ozone, chlorine dioxide, chlorine, bromine

 Temperature
 1 ... 45 °C

 Admissible temperature
 0.3 °C/min

fluctuation

Response time sensor t_{90} $\approx 3 \text{ min}$

Max. pressure 3.0 bar, (30 °C, in DGM)

Intake flow 30...60 l/h (in in-line probe housing DGM or DLG III)

Supply voltage 16...24 V DC (two-wire technology)

Output signal $4...20 \text{ mA} \approx \text{measuring range, temperature-compensated,}$

uncalibrated, not electrically isolated

Selectivity Peracetic acid selective towards hydrogen peroxide

Installation Bypass: open sample water outlet

In-line probe fittingDGM, DLGMeasuring and controlD1C, DAC

equipment

Typical applications Scouring in Cleaning in Place (CIP), rinsers, also suitable in the

presence of cationic and anionic tensides. The selective measurement

of peracetic acid and hydrogen peroxide is possible.

Resistance to Salts, acids, alkalis, surfactants, dirt films

Measuring principle, Amperometric, 2 electrodes, membrane-covered

technology

	Measuring range	Order no.
PAA 1-mA-200 ppm	1200 mg/l	1022506
PAA 1-mA-2000 ppm	102,000 mg/l	1022507

Note: a mounting kit (order no. 815079) is required for initial fitting of the sensors in the in-line probe housing DLG III.

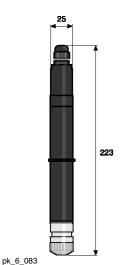
1.3.12 DULCOTEST® Sensors for Hydrogen Peroxide

DULCOTEST® sensors PEROX and PER1 are membrane-covered, amperometric sensors for the online concentration measurement of hydrogen peroxide. Due to its complete biodegradability, hydrogen peroxide is a disinfectant and oxidising agent frequently used in water treatment and production:

- chemical bleach in the wood, paper, textile and mineral compounds industries,
- organic synthesis in the chemical, pharmaceutical and cosmetics industries,
- oxidation of potable water, landfill seepage water, contaminated ground water,
- disinfection of cooling, process and production water in the pharmaceutical, food and beverage industries as well as in swimming pools,
- deodorisation (gas scrubbers) in municipal and industrial clarification plants,
- dechlorination in chemical processes.

Sensors are selected according to the following decision-making table:

Requirement	Туре	
	PER1	PEROX
Sample matrix loaded with dirt and chemicals	Suitable due to water-impermeable diaphragm, however sensitive to the presence of hydrogen sulphide (H ₂ S), oxidant	Failure-prone due to water-permeable diaphragm
Electrical influence due to interference potential in the measurement medium	Insensitive because the counter electrode is separated from the process	More sensitive because counter electrode is in the medium
Temperature range	Up to 50 °C	Up to 40 °C
Simple handling during installation and maintenance	Suitable due to temperature compensation and transmitters integrated in the sensor	Separate temperature sensor and transmitter
Response time as t ₉₀	480 s	20 s
Quick temperature changes	Slow due to integrated temperature sensor	Fast due to separate temperature sensor
Measuring intervals in the absence of ${\rm H_2O_2}$	Unsuitable	Suitable due to pulsed polarisation technology
Measuring range can vary in phased approach due to orders of magnitude or is not clear in the order	Selection of a suitable sensor is necessary	Suitable because the measuring range can be manually switched on the sensor transducer


Hydrogen Peroxide Sensor PER1

Sensor for the measurement of hydrogen peroxide even in chemically contaminated and polluted water. Available with measuring ranges for extremely low or very high concentrations

Your benefits

- Measured variable hydrogen peroxide, with measuring ranges from 0.5 ppm to 100,000 ppm (10%) available
- Diaphragm-covered sensor minimises faults caused by changing flow or ingredients in the water
- Resistance to films of dirt by pore-free diaphragm
- Operating temperature up to 50 °C

Measured variable Hydrogen peroxide

Calibration Photometric with manual DT3B photometer

pH range 1.0 ... 11.0

Cross sensitivity Ozone, chlorine dioxide, peracetic acid, chlorine, bromine

 $\begin{array}{ll} \mbox{Temperature} & 0 \dots 50 \ ^{\circ}\mbox{C} \\ \mbox{Admissible temperature} & < 0.3 \ ^{\circ}\mbox{C/min} \end{array}$

fluctuation

Response time sensor t₉₀ approx. 480 sec

Min. conductivity 0.05 ... 5.00 mS/cm

 Max. pressure
 1.0 bar

 Intake flow
 20...100 l/h

Supply voltage 16...24 V DC (two-wire system)

Output signal 4...20 mA temperature-compensated, uncalibrated,

not electrically isolated

Selectivity Hydrogen peroxide selective towards sulphite

Installation Bypass: open outlet or return of the sample water into the process line

In-line probe fitting DGM, DLG

Measuring and control D1Cb, DAC

equipment

Typical applications

Swimming pools, treatment of contaminated waste waters, treatment

of process media from production

Resistance to Salts, acids, alkalis, surfactants, dirt films, not against hydrogen

sulphide (H₂S)

Measuring principle,

technology

Amperometric, 2 electrodes, membrane-covered

	Measuring range	Order no.
PER 1-mA-50 ppm	0.5050.0 mg/l	1030511
PER 1-mA-200 ppm	2.00200.0 mg/l	1022509
PER 1-mA-2000 ppm	20.002,000.0 mg/l	1022510

Important note: Measuring ranges up to 100,000 ppm on request

Photometer→ 2-94

Accessories

		Order no.	
Photometer DT3B hydrogen peroxide	(for calibration)	1039317	

Note: a mounting kit (order no. 815079) is required for initial fitting of the sensors in the in-line probe housing DLG III.

Hydrogen Peroxide Sensor PEROX

Sensor for the measurement of hydrogen peroxide without cross-sensitivity to chlorine. Can also be used for fast control processes in clear water

Your benefits

- Measured variable hydrogen peroxide without cross sensitivity to chlorine
- Diaphragm-covered sensor minimises faults caused by changing flow
- Control of fast processes through rapid response time by the sensor in conjunction with fast external temperature measurement for temperature correction
- Reliable measurement even after periods of absence of hydrogen peroxide by pulsed, self-regenerating measuring electrode

Measured variable Hydrogen peroxide

Calibration Photometric with manual DT3B photometer Measuring range 1... 20/10 ... 200/100 ... 2000 mg/l switchable

pH range 2.5 ... 10.0 **Temperature** 0 ... 40 °C

Admissible temperature

fluctuation

< 1 °K/min (for external temp. measurement) see operating instructions

Response time sensor t₉₀ approx. 20 sec

Min. conductivity With 20 mg/l range: 5 µS/cm

With 200 mg/l range: 200 µS/cm Up to 1,000 mg/l: $500 \mu S/cm$ Up to 2,000 mg/l: 1 mS/cm

Max. pressure Intake flow 30...60 l/h

16...24 V DC (3-wire system) Supply voltage

Output signal 4...20 mA not temperature-compensated, uncalibrated,

not electrically isolated

Selectivity Hydrogen peroxide selective towards free chlorine

Installation Bypass: open outlet or return of the sample water into the process line

In-line probe fitting DGM, DLG Measuring and control DAC

Typical applications

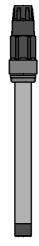
equipment

Treatment of clear and chemically uncontaminated waters, control with

necessary short response times

Resistance to Salts, acids, alkalis, surfactants, dirt films

Measuring principle, amperometric, 2 pulsing electrodes, diaphragm-covered


technology

PEROX sensor PEROX-H2.10 P	792976
PEROX transducer V1 for D1Ca	1034100
PEROX transducer V2 for DACa and DACb	1047979

Photometer→ 2-94

Accessories

		Order no.	
Photometer DT3B hydrogen peroxide	(for calibration)	1039317	

P DT 0075 SW

1.4.1

Conductivity Sensors

The advantages at a glance:

- Large range of sensor types tailored to meet different requirements offering excellent value for money.
- Precise and reliable online measurement enables efficient processes and outstanding process reliability.
- Long service lives and short maintenance intervals reduce downtime and increase the availability of the measured information.
- Complete pre-assembled sets containing fittings and sensors for simple, fast and trouble-free installation.

Note the following points for optimum functioning of conductivity sensors:

- Install the sensors so that the electrodes are always covered by the measuring liquid.
- Keep measuring lines as short as possible
- Temperature compensation with fluctuating temperatures
- Regular cleaning depending on the application
- Ensure that the cell constant and measuring range match each other

Conductivity sensor selection guide

Conductivity > 20 mS/cm or residue-forming medium or chemically aggressive medium? ves ⊥ no Inductive conductivity measurement conductive conductivity measurement 1 Do the following conditions exist? Further selection according to summary table: chemically corrosive medium or Measuring range Temperatures > 70 °C or **Temperature** Measured value < 200 μ S/cm or > 1000 mS/cm Process matching **Electrical connection** yes **↓** no Series ICT 2 Series ICT1 Product ranges LF, LMP, CK Successor ICT5 Installation in the process line: with stainless steel flange accessory For immersion with accessory: Immersion fitting IMA - ICT 2 Installation in the process line? yes **↓** no Type ICT 1-IMA Type ICT 1 Successor ICT5 Successor ICT5 for installation in for immersion a pipe

Overview Table for Conductivity Sensors

-	Гуре	Measuring range	Cell constant k	Medium temperature max.	Max. pressure	Shaft material	Temperature compensation		Electrical connection on the measuring device
		mS/cm	cm ⁻¹	°C	bar				-
	_MP001 → 1-91	0.0150 mS/cm	0.01 ±5 %	70	16	PP	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
	_MP 001-HT → 1-92	0.0150 mS/cm	0.01 ±5 %	120	16	PVDF	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
	_MP 01 → 1-93	0.1500 mS/cm	0.1 ±5 %	70	16	PP	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
	_MP 01-HT → 1-95	0.1500 mS/cm	0.1 ±5 %	120	16	PVDF	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
	MP 01-TA → 1-94	0.1500 mS/cm	0.1 ±5 %	70	16	PP	Pt 100	Immersion, including immersion fitting 1 m	5 m fixed cable, on Compact; DMTa
	_FT 1 FE → 1-96	0.0120 mS/cm	1 ±5 %	80	16	Ероху	Pt 100	PG 13.5, flow (length: 120 mm) or immersion	5 m fixed cable (4 x 0.5 mm²), on DMTa
į	_FTK 1 FE- 5m-shd → 1-97	0.0120 mS/cm	1 ±5 %	80	16	Ероху	Pt 1000	PG 13.5, flow (length: 120 mm) or immersion	5 m fixed cable (4 x 0.25 mm²), screened, on Compact; DMTa
(_FTK 1 FE- Bm-shd → 1-98	0.0120 mS/cm	1 ±5 %	80	16	Ероху	Pt 1000	PG 13.5, flow (length: 120 mm) or immersion	3 m fixed cable (4 x 0.25 mm²), screened, on Compact; DMTa
	JF 1 DE → 1-99	0.0120 mS/cm	1 ±5 %	80	16	Ероху	None, only for applications with constant temperature	PG 13.5, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
	LFT 1 DE → 1-100	0.0120 mS/cm	1 ±5 %	80	16	Ероху	Pt 100	PG 13.5, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
	_FTK 1 DE → 1-101	0.0120 mS/cm	1 ±5 %	80	16	Ероху	Pt 1000	PG 13.5, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
	_FT 1 1/2" → 1-102	0.0120 mS/cm	1 ±5 %	80	16	Ероху	Pt 100	1/2 inch male thread, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
	_FTK 1 1/2" → 1-103	0.0120 mS/cm	1 ±5 %	80	16	Ероху	Pt 1000	1/2 inch male thread, flow (length: 120 mm) or immersion	DIN 4-pin angle plug, on Compact; DMTa
	CK 1 → 1-104	0.0120 mS/cm	1 ±5 %	150	16	PES	none, only for applications with constant temperature	Flow, 1" outer thread	DIN 4-pin angle plug, on Compact; DMTa
	OKPt 1 → 1-105	0.0120 mS/cm	1 ±5%	150	16	PES	Pt 100	Flow, 1" outer thread	DIN 4-pin angle plug, on Compact; DMTa
-	-M 1 → 1-106	0.120 mS/cm	1 ±5%	70	16	PP	_	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
	_M 1-TA → 1-107	0.120 mS/cm	1 ±5 %	70	16	PP	-	Immersion, including immersion fitting 1 m	5 m fixed cable, screened, on Compact; DMTa

Туре	Measuring range	Cell constant k	Medium temperature max.	Max. pressure		Temperature compensation		Electrical connection on the measuring device
	mS/cm	cm ⁻¹	°C	bar				
LMP 1 → 1-108	0.120 mS/cm	1 ±5 %	70	16	PP	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
LMP 1-HT → 1-110	0.120 mS/cm	1 ±5 %	120	16	PVDF	Pt 100	Flow, 3/4" outer thread	DIN 4-pin angle plug, on Compact; DMTa
LMP 1-TA → 1-109	0.120 mS/cm	1 ±5 %	70	16	PP	Pt 100	Immersion, including immersion fitting 1 m	5 m fixed cable, screened, on Compact; DMTa
CCT 1-mA → 1-111	0.0220 mS/cm		50	8	PVC	NTC	Bypass (DGM, DLGIII fitting), flow (INLI fitting)	4-wire cable/ 0.25 mm²/ cable diameter 5.7 mm, über Klemme
LF 204 → 1-112	0.1 500 mS/cm	0.48 ±1.5 %	_	2	-	-	Manual immersion	3 m fixed cable, extendible to 50 m, with cable type: 0.5 mm ² or AWG 22.,
ICT 1 → 1-112	0.2 1,000 mS/cm	8.5 ±5%	70	16	PP	Pt 100	Flow DN 50	On Portamess 911 Cond
ICT 1-IMA → 1-113	0.2 1,000 mS/cm	8.5 ±5 %	70	8	PP	Pt 100	Immersion including immersion fitting 1 m	7 m fixed cable, On Compact
ICT 5 → 1-114	0.22,000 mS/ cm	6.25 ±5 %	80	10	PP	Pt 100	Flow DN 40	7 m fixed cable, On Compact
ICT 5-IMA → 1-115	0.2 2,000 mS/cm	6.25 ±5%	60	0	PP	Pt 100	Immersion, sensor integrated in 1 m immersion fitting	7 m fixed cable,
ICT 2 → 1-116	0.022,000 mS/ cm	1.98	125	16	PFA	Pt 100, class A, completely extrusion- coated	Installation with SS flange, immersion with immersion pipe fixed cable (Accessories)	7 m fixed cable,

General information:

- 1 The DMTa transducer is available for conversion of the measurement signal into a temperature compensated 4-20 mA signal (see Chapter 8).
- 2 Connections for the DIN-4 pole angle plug:
 - Sensors: Earth and 2
 - Pt 100/1000: 1 and 3
- 3 With DIN 4 pole angle plugs, the cable must be screened if the sensor is connected to the compact controller or DMTa.
- 4 An adapter set PG 13.5 / 1" (order no. 1002190) is necessary for installation in the in-line probe housing type DLG III (1"-hole).

Measuring line for conductive conductivity sensors see page \rightarrow 1-120

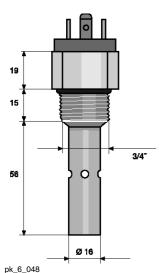
1.4.2

2-Electrode Conductivity Sensors

Conductive conductivity sensors measure the electrolytic conductivity indirectly via the charge transfer between two electrodes immersed in the medium to be measured. The sensor types with cell constants k=0.01 and $k=0.1\ cm^{-1}$ are especially suitable for the measurement of the lowest electrolytic conductivities of < 1 $\mu S/cm$ in pure and ultra-pure kinds of water.

The sensor types with cell constants k=1 cm⁻¹ are used in numerous kinds of water without film-forming ingredients up to 20 mS/cm. The cost-effective sensor range LF(T) is used in clear, chemically uncontaminated water.

The sensor ranges LM(P), CK and CKPt can also be used in chemically contaminated kinds of water and a high temperatures.


Conductivity Sensor LMP 001

Sensor for the measurement of the lowest electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.01 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...50 \ \mu\mbox{S/cm} \\ \mbox{Cell constant k} & 0.01 \ \mbox{cm}^{-1} \pm 5\% \\ \mbox{Temperature measurement} & Pt \ 100 \\ \mbox{Medium temperature} & 0...70 \ \mbox{°C} \\ \end{tabular}$

Max. pressure16.0 bar up to 50 °C,SensorsStainless steel 1.4571

Shaft materialPPThread3/4"Length when fitted71 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 69

Typical applications Clean water applications, monitoring ion exchangers and reverse

osmosis systems

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

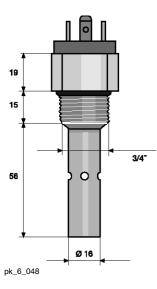
Measuring principle, Conductive, 2 electrodes. Integrated temperature measurement

technology

Order no.

LMP 001 1020508

Please observe the general notes on p. → 1-89 (Overview Table for Conductivity Sensors)


Conductivity Sensor LMP 001-HT

Sensor for the measurement of the lowest electrolytic conductivity for clear and also chemically contaminated water. For high temperatures, with integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.01 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Temperature resistance up to 100 °C

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...50 \ \mu\mbox{S/cm} \\ \mbox{Cell constant k} & 0.01 \ \mbox{cm}^{-1} \pm 5\% \\ \mbox{Temperature measurement} & \mbox{Pt } 100 \\ \mbox{Medium temperature} & 0...120 \ \mbox{°C} \\ \end{tabular}$

Max. pressure16.0 bar up to 100 °C,SensorsStainless steel 1.4571

Shaft materialPVDFThread3/4"Length when fitted71 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications General applications at higher temperatures, clean water applications,

condensate

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

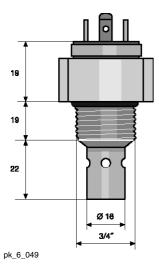
Measuring principle,

technology

Conductive, 2 electrodes. Integrated temperature measurement

 LMP 001-HT
 Order no.

Please observe the general notes on p. \rightarrow 1-89 (Overview Table for Conductivity Sensors)


Conductivity Sensor LMP 01

Sensor for the measurement of low electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

Measuring range $0.1...500 \mu S/cm$ Cell constant k $0.10 \text{ cm}^{-1} \pm 5\%$ Temperature measurement Pt 100 Medium temperature 0 ... 120 °C

Max. pressure 16.0 bar up to 50 °C, Stainless steel 1.4571 Sensors

Shaft material Thread 3/4" Length when fitted 46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating

Typical applications Monitoring ion exchangers, reverse osmosis systems and desalination

Ingredients in the water of the target application, taking into account the Resistance to

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

Measuring principle,

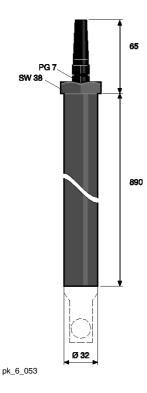
technology

Conductive, 2 electrodes. Integrated temperature measurement

Order no.

LMP 01 1020510

Please observe the general notes on p. → 1-89 (Overview Table for Conductivity Sensors)


Conductivity Sensor LMP 01-TA

Sensor for the measurement of low electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 μS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Simple installation in tanks and containers by sensor ready mounted in the immersion tube
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.1...500 \ \mu\mbox{S/cm} \\ \mbox{Cell constant k} & 0.10 \ \mbox{cm}^{-1} \pm 5\% \\ \mbox{Temperature measurement} & \mbox{Pt } 100 \\ \mbox{Medium temperature} & 0... \ 70 \ \mbox{°C} \\ \end{tabular}$

Max. pressure16.0 bar up to 50 °C,SensorsStainless steel 1.4571

Shaft material PF

Thread M 28 x 1.5 for immersion assembly TA-LM

Fitting length Max. 1 m

Installation Immersion through an immersion tube

Electrical connection 5 m fixed cable

Enclosure rating IP 65

Typical applications Monitoring ion exchangers, reverse osmosis systems and desalination

systems.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

Measuring principle,

technology

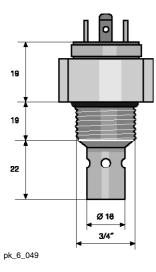
Conductive, 2 electrodes. Integrated temperature measurement

		Order no.	
LMP 01-TA	Sensor integrated in immersion fitting	1020512	
LMP 01-FE	Replacement sensor for LMP 01-TA with 5 m fixed cable	1020626	

Please observe the general notes on p. → 1-89 (Overview Table for Conductivity Sensors)

ensor Technology DULCOTEST®

1.4 DULCOTEST® Conductivity Sensors


Conductivity Sensor LMP 01-HT

Sensor for the measurement of low electrolytic conductivities for clear and also chemically contaminated water. For high temperatures, with integrated temperature measurement and DIN 4-pin plug. For operation with the controllers DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 μm/cm
- Cost-effective sensor for clear, chemically contaminated water
- Temperature resistance up to 100 °C
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.1...500 \ \mu\mbox{S/cm} \\ \mbox{Cell constant k} & 0.10 \ \mbox{cm}^{-1} \ \pm 5\% \\ \mbox{Temperature measurement} & \mbox{Pt } 100 \\ \mbox{Medium temperature} & 0... \ 120 \ \mbox{°C} \\ \end{tabular}$

Max. pressure16.0 bar up to 100 °C,SensorsStainless steel 1.4571

Shaft materialPVDFThread3/4"Length when fitted46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications General applications at higher temperatures: industrial, process water,

condensate

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

 $Conductive, 2\ electrodes.\ Integrated\ temperature\ measurement$

Order no.

LMP 01-HT 1020511

Please observe the general notes on p. \rightarrow 1-89 (Overview Table for Conductivity Sensors)

Conductivity Sensor LFT 1 FE

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and fixed cable connector. For operation with controllers Compact D1Ca and DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
 Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Fixed cable on the sensor head for difficult ambient conditions

pk_6_085

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5\% \\ \mbox{Temperature measurement} & \mbox{Pt } 100 \\ \end{tabular}$

Medium temperature $0 \dots 80 \,^{\circ}\text{C}$ (at 1 bar)Max. pressure $16.0 \, \text{bar}$, (at 25 $^{\circ}\text{C}$)SensorsSpecial graphite

 Shaft material
 Epoxy

 Thread
 PG 13.5

 Fitting length
 120 mm ±3 mm

InstallationBypass: open outlet or return of the sample water into the process line, inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection 5 m fixed cable (4 x 0.5 mm²)

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

D1Ca, DMTa

Measuring principle,

technology

Conductive, 2 electrodes. Integrated temperature measurement

Order no.

LFT 1 FE 1001374

Please observe the general notes on p. \rightarrow 1-89 (Overview Table for Conductivity Sensors)

Conductivity Sensor LFTK 1 FE-5m-shd

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and fixed cable connector (5 m). For operation with controllers Compact DCCa, DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 1000 for precise temperature compensation in limited temperature ranges replaces separate temperature sensor and the corresponding sensor fitting
- Fixed cable on the sensor head for difficult ambient conditions

pk_6_085

 Measuring range
 0.01...20 mS/cm

 Cell constant k
 1.00 cm⁻¹ ±5%

Temperature measurement Pt 1000

 $\begin{tabular}{lll} \mbox{Medium temperature} & 0 ... & 80 \ ^{\circ}\mbox{C} \ (at 1 \ bar) \\ \mbox{Max. pressure} & 16.0 \ bar, \ (at 25 \ ^{\circ}\mbox{C}) \\ \mbox{Sensors} & \mbox{Special graphite} \\ \end{tabular}$

 Shaft material
 Epoxy

 Thread
 PG 13.5

 Fitting length
 120 mm ±3 mm

InstallationBypass: with or without return of the sample water into the process line, inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection 5 m fixed cable (4 x 0.25 mm²), screened

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa

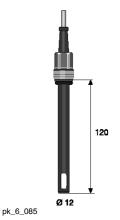
Measuring principle, Conductive, 2 electrodes. Integrated temperature measurement

technology

 LFTK 1 FE-5m-shd
 Order no.

 1046132
 1046132

Please observe the general notes on p. → 1-89 (Overview Table for Conductivity Sensors)


Conductivity Sensor LFTK 1 FE-3m-shd

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and fixed cable connector (3 m). For operation with controllers Compact DCCa, DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 1000 for precise temperature compensation in limited temperature ranges replaces separate temperature sensor and the corresponding sensor fitting
- Fixed cable on the sensor head for difficult ambient conditions

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5\% \\ \mbox{Temperature measurement} & \mbox{Pt } 1000 \\ \end{tabular}$

Medium temperature $0 \dots 80 \,^{\circ}\text{C}$ (at 1 bar)Max. pressure $16.0 \, \text{bar}$, (at $25 \,^{\circ}\text{C}$)SensorsSpecial graphite

 Shaft material
 Epoxy

 Thread
 PG 13.5

 Fitting length
 120 mm ±3 mm

Installation Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection 3 m fixed cable (4 x 0.25 mm²), screened

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa

Measuring principle,

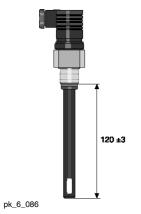
technology

Conductive, 2 electrodes. Integrated temperature measurement

Order no.

LFTK 1 FE-3m-shd 1046010

Please observe the general notes on p. \rightarrow 1-89 (Overview Table for Conductivity Sensors)


Conductivity Sensor LF 1 DE

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. For applications with a constant temperature, with DIN 4-pin plug. For operation with controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Cost-effective version without integral temperature measurement with constant temperature of the medium to be measured
- DIN 4-pin plug for simple installation

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \mbox{ mS/cm} \\ \mbox{Cell constant k} & 1.00 \mbox{ cm$^{-1}$} $\pm 5\% \\ \end{tabular}$

Temperature measurement None, only for applications with constant temperature

 $\begin{tabular}{lll} \mbox{Medium temperature} & 0 ... & 80 \ ^{\circ}\mbox{C} \ (at 1 \ bar) \\ \mbox{Max. pressure} & 16.0 \ bar, \ (at 25 \ ^{\circ}\mbox{C}) \\ \mbox{Sensors} & \mbox{Special graphite} \\ \end{tabular}$

 Shaft material
 Epoxy

 Thread
 PG 13.5

 Fitting length
 120 mm ±3 mm

Installation

Bypass: with or without return of the sample water into the process line, inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

Conductive, 2 electrodes

Order no.

LF 1 DE 1001375

Conductivity Sensor LFT 1 DE

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and DIN 4-pin plug. For operation with controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear, uncontaminated types of water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5\% \\ \end{tabular}$

Temperature measurement Pt 100

 $\begin{tabular}{lll} \mbox{Medium temperature} & 0 ... & 80 \ ^{\circ}\mbox{C} \ (at 1 \ bar) \\ \mbox{Max. pressure} & 16.0 \ bar, \ (at 25 \ ^{\circ}\mbox{C}) \\ \mbox{Sensors} & \mbox{Special graphite} \\ \end{tabular}$

 Shaft material
 Epoxy

 Thread
 PG 13.5

 Fitting length
 120 mm ±3 mm

Installation Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

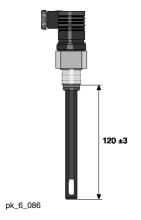
Conductive, 2 electrodes. Integrated temperature measurement

Order no.

LFT 1 DE 1001376

ensor Technology DULCOTEST®

1.4 DULCOTEST® Conductivity Sensors


Conductivity Sensor LFTK 1 DE

Cost-effective sensor for the measurement of the electrolytic conductivity in clear, uncontaminated water with integral temperature measurement and DIN 4-pin plug. For operation with controllers Compact DCCa, DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear uncontaminated water
- Flexible process connection by the use of sensor fittings for standard pH sensors
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5\% \\ \mbox{Temperature measurement} & \mbox{Pt } 1000 \\ \end{tabular}$

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

 Shaft material
 Epoxy

 Thread
 PG 13.5

 Fitting length
 120 mm ±3 mm

Installation Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Compact DCCa, DMTa

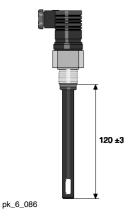
Measuring principle,

technology

Conductive, 2 electrodes. Integrated temperature measurement

Order no.

LFTK 1 DE 1002822


Conductivity Sensor LFT 1 1/2"

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and DIN 4-pin plug and 1/2-inch screw thread. For operation with controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Cost-effective sensor for all clear, uncontaminated types of water
- Hydraulic connector with 1/2" thread as an alternative to the corresponding standard design with PG 13.5 thread
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

 $\begin{tabular}{llll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5\% \\ \mbox{Temperature measurement} & Pt 100 \\ \end{tabular}$

Medium temperature0 ... 80 °C (at 1 bar)Max. pressure16.0 bar, (at 25 °C)SensorsSpecial graphite

Shaft material Epoxy
Thread 1/2"

Fitting length 120 mm ±3 mm

Installation Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients

Measuring and control

equipment

Measuring principle,

technology

Compact DCCa, DMTa, D1Ca

Conductive, 2 electrodes. Integrated temperature measurement

Order no.

LFT 1 1/2" 1001378


Conductivity Sensor LFTK 1 1/2"

Cost-effective sensor for the measurement of electrolytic conductivity in clear, uncontaminated water. With integrated temperature measurement and DIN 4-pin plug and 1/2-inch screw thread. For operation with controllers Compact DCCa, DMTa

Your benefits

- Measured variable: electrolytic conductivity above 10 μC/cm
- Cost-effective sensor for all clear, uncontaminated types of water
- Hydraulic connector with 1/2" thread as an alternative to the corresponding standard design with PG 13.5 thread
- Special graphite electrodes, optimised for a highly dynamic measuring range: 0.01-20 mS/cm
- Integrated Pt 1000 for precise compensation in limited temperature ranges and with longer cables. Replaces separate temperature sensor and the corresponding sensor fitting
- DIN 4-pin plug for simple installation

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5\% \\ \mbox{Temperature measurement} & \mbox{Pt } 1000 \\ \end{tabular}$

Medium temperature0 ... 80 °C (at 1 bar)Max. pressure16.0 bar, (at 25 °C)SensorsSpecial graphite

Shaft material Epoxy
Thread 1/2"

Fitting length 120 mm ±3 mm

Installation Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial water. Sensors of the LF series have only

limited applicability for taking measurements in cleaning solutions

containing surfactants and media containing solvents.

Resistance to Unsuitable for chemically contaminated water and water containing

film-forming ingredients Compact DCCa, DMTa

Measuring and control

equipment

Measuring principle,

technology

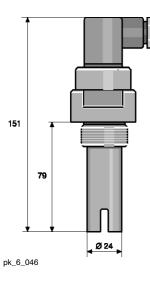
Conductive, 2 electrodes. Integrated temperature measurement

Order no.

LFTK 1 1/2" 1002823

Please observe the general notes on p. → 1-89 (Overview Table for Conductivity Sensors)

1-103


Conductivity Sensor CK 1

Sensor for the measurement of the electrolytic conductivity in clear, chemically contaminated water with high but constant temperature with DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Resistant to water ingredients in target applications thanks to injection-moulded design without adhesive or seals
- High temperature resistance up to 150 °C

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.01...20 \mbox{ mS/cm} \\ \mbox{Cell constant k} & 1.00 \mbox{ cm}^{-1} \pm 5\% \\ \end{tabular}$

Temperature measurement None, only for applications with constant temperature

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Shaft materialPESThreadR 1"Length when fitted79 mm

Installation Bypass: with or without return of the sample water into the process line,

inline: direct installation into the pipework; fixed or replaceable (replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 69

Typical applications Cooling, industrial, process water, tank and pipe, cleaning systems in

breweries, dairies, media separation.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

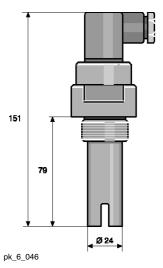
Measuring principle,

technology

Conductive, 2 electrodes

Order no.

CK 1 305605


Conductivity Sensor CKPt 1

Sensor for the measurement of the electrolytic conductivity for clear, chemically contaminated water and higher temperatures. With integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 10 μS/cm
- Resistant to water ingredients in target applications thanks to injection-moulded design without adhesive or seals
- High temperature resistance up to 150 °C
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

0.01...20 mS/cm Measuring range Cell constant k $1.00 \text{ cm}^{-1} \pm 5\%$

Temperature measurement Pt 100

Medium temperature 0 ... 150 °C (at 1 bar) Max. pressure 16.0 bar, (at 20 °C) Sensors Special graphite

PES **Shaft material** R 1" **Thread** Length when fitted 79 mm

Installation Bypass: with or without return of the sample water into the process line, inline: direct installation into the pipework; fixed or replaceable

(replaceable fitting), tank, channel: Immersion in the immersion tube

Electrical connection DIN 4-pin angle plug

Enclosure rating

Typical applications Cooling, industrial, process water, tank and pipe cleaning systems in

breweries and dairies, separation of media.

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

Measuring and control

equipment

Measuring principle,

technology

Conductive, 2 electrodes. Integrated temperature measurement

Order no.

CKPt 1 305606

19

46

pk_6_052

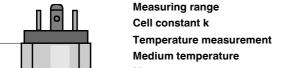
1.4 DULCOTEST® Conductivity Sensors

Conductivity Sensor LM 1

3/4~

Ø 23

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. With DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca


Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the constituents in the water of the target application

0.1...20 mS/cm

 $1.00 \text{ cm}^{-1} \pm 5\%$

0 ... 70 °C (at 1 bar)

Max. pressure 16.0 bar, (at 50 °C) Sensors Graphite **Shaft material** PP

3/4" **Thread** Length when fitted 46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

None, only for applications with constant temperature

Electrical connection DIN 4-pin angle plug

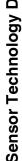
Enclosure rating

Typical applications Potable, cooling, industrial, process water, Feed chemical separation Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Conductive, 2 electrodes

Measuring and control

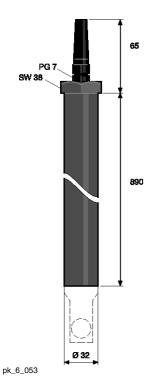

equipment

Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

Order no. LM 1 740433


Conductivity Sensor LM 1-TA

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. Completely mounted in an immersion fitting. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- $\quad\blacksquare\quad$ Simple installation in tanks, containers etc. by sensor ready mounted in the immersion tube

Measuring range 0.1...20 mS/cm Cell constant k 1.00 cm⁻¹ ±5%

Temperature measurement None, only for applications with constant temperature

Medium temperature 0 ... 70 °C (at 1 bar) Max. pressure 16.0 bar, (at 50 °C) Sensors

Graphite **Shaft material**

Thread M 28 x 1.5 for TA-LM in-line probe fitting

Fitting length

Installation Tank, Gerinne: Eintauchen über Tauchrohr

Electrical connection 5 m fixed cable, screened

Enclosure rating

Typical applications Potable, cooling, industrial, process water, media separation

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material Compact DCCa, DMTa, D1Ca

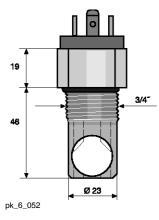
Measuring and control

equipment

Measuring principle, Conductive, 2 electrodes

technology

		Order no.	
LM 1-TA	Sensor integrated in immersion fitting	1020528	
LM 1-FE	Replacement sensor for LM 1-TA	1020627	


Conductivity Sensor LMP 1

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. With integrated temperature measurement with DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

 $\begin{tabular}{lll} \mbox{Measuring range} & 0.1...20 \ mS/cm \\ \mbox{Cell constant k} & 1.00 \ cm^{-1} \pm 5\% \\ \mbox{Temperature measurement} & \mbox{Pt } 100 \\ \end{tabular}$

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

SensorsGraphiteShaft materialPPThread3/4"Length when fitted46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications Potable, cooling, industrial, process water, media separation

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

Measuring principle,

technology

Compact DCCa, DMTa, D1Ca

Conductive, 2 electrodes. Integrated temperature measurement

Order no.

LMP 1 1020513

Conductivity Sensor LMP 1-TA

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. With integrated temperature measurement, ready mounted in an immersion fitting. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Simple installation in tanks, containers etc. by sensor ready mounted in the immersion tube

0.1...20 mS/cm Measuring range Cell constant k $1.00 \text{ cm}^{-1} \pm 5\%$

Temperature measurement Pt 100

Medium temperature 0 ... 70 °C (at 1 bar) Max. pressure 16.0 bar, (at 50 °C)

Sensors Graphite **Shaft material** PP

Thread M 28 x 1.5 for TA-LM in-line probe fitting

Length when fitted

Installation Tank, Gerinne: Eintauchen über Tauchrohr

Electrical connection 5 m fixed cable, screened

Enclosure rating

Typical applications Potable, cooling, industrial, process water, media separation

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

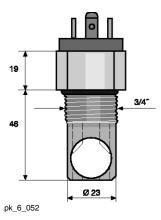
Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

Conductive, 2 electrodes

		Order no.
LMP 1-TA	sensor integrated in immersion fitting	1020525
LMP 1-FE	Replacement sensor for LMP 1-TA	1020727


Conductivity Sensor LMP 1-HT

Sensor for the measurement of the electrolytic conductivity for clear and also chemically contaminated water. For high temperatures, with integrated temperature measurement and DIN 4-pin plug. For operation with the controllers Compact DCCa, DMTa, D1Ca

Your benefits

- Measured variable: electrolytic conductivity above 0.1 mS/cm
- Cost-effective sensor for clear, chemically contaminated water
- Resistant to the ingredients in the water of the target applications
- Integrated Pt 100 for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting
- Temperature resistance up to 100 °C

Medium temperature $0 \dots 120 \,^{\circ}\text{C}$ (at 1 bar)Max. pressure $16.0 \, \text{bar}$, (at $100 \,^{\circ}\text{C}$)

SensorsGraphiteShaft materialPVDFThread3/4"Length when fitted46 mm

Installation Inline: direct installation into the pipework, bypass: with or without

return of the sample water into the process line

Electrical connection DIN 4-pin angle plug

Enclosure rating IP 65

Typical applications General applications at higher temperaturesprocess water, process

water from electroplating, media separation, with CIP (cleaning in

place)

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

Compact DCCa, DMTa, D1Ca

Measuring principle,

technology

 $\label{lem:conductive} Conductive, 2 \ electrodes. \ Integrated \ temperature \ measurement$

Order no.

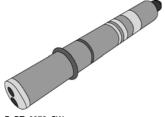
LMP 1-HT 1020524

sensor Technology DULCOTEST®

1.4 DULCOTEST® Conductivity Sensors

Conductivity sensor CCT 1-mA

Sensor for the measurement of electrolytic conductivities for clear and also chemically contaminated water. With integrated temperature measurement and factory-calibrated 4...20 mA output signal. For operation with the controllers diaLog DAC, AEGIS® II, DULCOMARIN®.


Your benefits

■ Measured variable: electrolytic conductivity up to 20 mS/cm

Reliable 4-20 mA output signal for the flexible connection to different measuring devices

Integrated temperature sensor for temperature compensation replaces separate temperature sensor and the corresponding sensor fitting

Measuring range0.2...20 mS/cmTemperature measurementNTC, integratedMedium temperature0 ... 50 °C(at 1 bar)Max. pressure8.0 bar, (at 25 °C)

Sensor head PMMA

Sensors Special graphite

Shaft material PVC

Fitting length 51 mm / 71 mm

Installation Bypass via sensor fittings DGM, DLGIII or installation into G1" PP pipe

via INLI sensor fitting

Electrical connection 4-wire cable/0.25 mm²/ cable diameter 5.7 mm

Power supply DC 12...36 V DC

Voltage 4 ... 20 mA loop 4... 20 mA loop + 7.5 V

Output signal 4 ... 20 mA, temperature-compensated, factory-calibrated,

galvanically isolated

Enclosure rating IP 69

Typical applications Cooling, industrial, process water, general water with higher salt

content up to 20 mS/cm

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control

equipment

diaLog DAC, AEGIS® II, DULCOMARIN®

Measuring principle Conductive, 2 electrodes. Integrated temperature measurement,

integrated 4...20 mA transducer

Order no.

CCT 1-mA-20 mS/cm 1081545

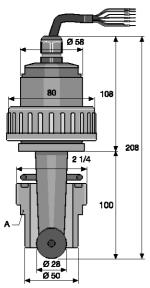
1.4.3

Inductive Conductivity Sensors

Inductive conductivity sensors consist of a transducer, encapsulated in an inert material. The electrolytic conductivity is measured inductively without direct contact with the medium.

The sensors are used to measure electrolytic conductivity over a wide measuring range, even in heavily contaminated and/or aggressive media and, as such, offer particularly low maintenance operation. The sensors are particularly suitable for measuring high conductivities, as no electrode polarisation occurs. The inductive conductivity sensors are operated using the Compact controller DCCa xx L6 ... The controller includes the testing and calibration kit (Order no. 1026958).

Conductivity Sensor ICT 1


Note: Will be replaced by type ICT 5 in the 2nd guarter of 2018.

Cost-effective inductive conductivity sensor, suitable for high electrolytic conductivities above 200 µS/ cm. Also suitable for chemically contaminated water and film-forming media. For installation in pipework

Your benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- There is no need for adhesive or seals as the sensor is fully embedded in PP
- Measurements at high conductivity values of up to 1,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Simple installation in a PVC pipe by bonding the DN 40 adhesive connector supplied into a standard T-piece and screwing in the sensor using the union nut supplied. A DN 40 welded connector is optionally available for use in PP pipework

P MSRZ 0013 SW1 A=Adhesive joints PVC, Fusion joints PP, DN

0.2...1,000 mS/cm Measuring range Cell constant k 8.5 cm⁻¹ ±5%

Measuring accuracy < 1% relative to final value of measuring range

Temperature compensation Pt 100 Process chemical temperature 0...70 °C

16.0 bar up to 40 °C, 1.0 bar up to 70 °C Max. pressure

Material Sensor: PP Seals: FKM

Electrical connection 7 m fixed cable

Enclosure rating

Typical applications All types of soiled water, desalination control in cooling towers, control

of electroplating baths, Cleaning in Place (CIP), product monitoring,

sea water

Resistance to PP-compatible chemicals, deposit-forming media

Installation With union nut, 2 1/4 inch internal thread, DN 40, PVC incl. DN 40 bonded nozzle with 2 1/4 external thread for fitting in DN 40 PVC

standard tube (within scope of supply).

The corresponding set-in nozzle for fitting in PP standard tube is

available as an accessory. D1C for inductive conductivity

Measuring and control

equipment

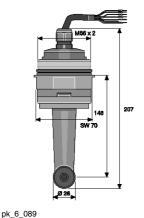
Measuring principle, Inductive, 2 coils. Integrated temperature measurement

technology

Welding socket for T-piece (PP) type ICT 1 \rightarrow 1-133, Controller DULCOMETER® D1Cb/D1Cc for all Measured Variables

Order no. ICT 1 1023244

Conductivity Sensor ICT 1-IMA


Note: Will be replaced by type ICT 5 IMA in the 2nd quarter of 2018.

Cost-effective inductive conductivity sensor, suitable for high electrolytic conductivities above 200 µS/ cm. Also suitable for chemically contaminated water and film-forming media. Completely integrated in an immersion pipe

Your benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- There is no need for adhesive or seals as the sensor is fully embedded in PP
- Measurements at high conductivity values of up to 1,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Simple installation in tanks, containers etc. thanks to sensor ready mounted in the immersion tube

Measuring range 0.2...1,000 mS/cm Cell constant k 8.5 cm⁻¹ ±5%

Measuring accuracy < 1% relative to final value of measuring range

Temperature compensation Pt 100 Process chemical temperature 0...70 °C

Max. pressure 8.0 bar up to 40 °C, 1.0 bar up to 70 °C Material Sensor and immersion tube: PP

Seals: FKM

Long immersion pipe $1 \, \text{m} / 2 \, \text{m}$ **Electrical connection** 7 m fixed cable

Enclosure rating

Typical applications Polluted waste water of all kinds, blowdown control in cooling towers,

control of electroplating baths, Cleaning in Place (CIP), product

monitoring, sea water

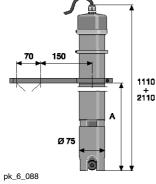
Resistance to PP-compatible chemicals, deposit-forming media

Long immersion pipe Immersion sensor complete with 1 m immersion pipe or 2 m immersion

The fitting accessories for the immersion valve IPHa 3-PP can also be

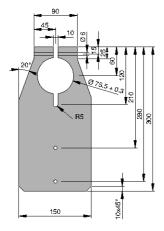
used for the immersion sensor.

Measuring and control


equipment

Compact controller DCCa

technology


Measuring principle, Inductive, 2 coils. Integrated temperature measurement

PP immersion assembly type IPHa 3 -PP , Controller DULCOMETER® D1Cb/D1Cc for all Measured Variables

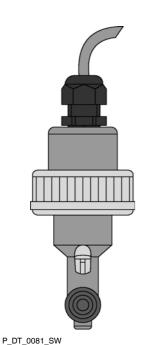
A = min. 155 mm / max. 1 m or 2 m

	Order no.
ICT 1-IMA 1 m	1023349
ICT 1-IMA 2 m	1023351

P_AC_0262_SW1

Conductivity sensor ICT 5

Note: Will replace type ICT 1 in the 2nd quarter of 2018.



Cost-effective inductive conductivity sensor, suitable for high electrolytic conductivities above 200 µS/cm. Also suitable for chemically contaminated water and film-forming media. For installation in pipework

Your benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- Complete with injection moulded PP sensor head, no apparent bonds, seals
- Measurements at high conductivity values of up to 2,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Simple installation in PVC pipework by bonding the DN 40 adhesive connector supplied into a standard T-piece and screwing in the sensor using the union nut supplied.
- A DN 40 welded connector is optionally available for use in PP pipework

0.2...2,000 mS/cm Measuring range Cell constant k 6.25 cm⁻¹ ±5%

Measuring accuracy < 1 % based on the full-scale reading

Temperature sensor Pt 1000 Process chemical temperature -10...80 °C

10.0 bar up to 20 °C, 6.0 bar up to 60 °C, 0.0 bar at 80 °C Max. pressure

Min. pressure -0.1 bar at -10 ... 80 °C

Sensor material Seals **EPDM Electrical connection**

7 m fixed cable

IP 65 **Enclosure rating**

Typical applications Polluted waste water of all kinds, blowdown control in cooling towers,

control of electroplating baths, Cleaning in Place (CIP), product

Resistance to Ingredients in the water of the target application, taking into account

compatibility to PP/EPDM, deposit-forming media

With union nut, PVC, 1 1/2 inch female thread, including DN 40 bonded Installation

Compact controller DCCa

nozzle with 1 1/2 inch external thread for fitting in DN 40 PVC standard pipes (included in the scope of delivery). The corresponding set-in nozzle for fitting in PP standard pipe is available as an accessory

Measuring and control

equipment

Measuring principle,

technology

Inductive, 2 coils. Integrated temperature measurement

Order no. ICT 5 on request

Conductivity Sensor ICT 5-IMA

Note: Will replace type ICT 1 IMA in the 2nd quarter of 2018.

Cost-effective inductive conductivity sensor, suitable for high electrolytic conductivities above 200 µS/ cm. Also suitable for chemically contaminated water and film-forming media. Completely integrated in an immersion pipe

Your benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- Complete with injection moulded PP sensor head, no apparent bonds, seals
- Measurements at high conductivity values of up to 2,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Simple installation in tanks, containers etc. thanks to sensor ready mounted in the immersion tube

Measuring accuracy < 1 % based on the full-scale reading

Temperature sensor Process chemical temperature -10...60 °C 0.0 bar Max. pressure

Min. pressure -0.1 bar at -10 ... 60 °C

Sensor material PP PP Immersion pipe material

Sensor guard material SS 1.4301, AISI 304

Seals **EPDM**

Electrical connection 7 m fixed cable

Enclosure rating

Polluted waste water of all kinds, blowdown control in cooling towers, **Typical applications**

control of electroplating baths, Cleaning in Place (CIP), product

monitoring, sea water

Resistance to Ingredients in the water of the target application, taking into account

compatibility to PP/EPDM, deposit-forming media

Installation Immersion with immersion length 1 m

Measuring and control

equipment

Compact controller DCCa

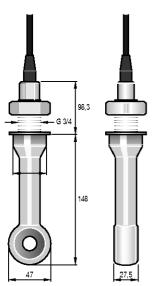
Measuring principle,

technology

Inductive, 2 coils. Integrated temperature measurement

Order no. ICT 5-IMA on request

P_DT_0079_SW


Conductivity Sensor ICT 2

High-performance inductive conductivity sensor with high dynamic measuring range. Also suitable for types of water with aggressive chemicals and film-forming components. Permitted temperatures up to $125\,^{\circ}$ C. For installation in pipework, tanks and for immersion in storage tanks

Your benefits

- Measured variable: electrolytic conductivity. The inductive (non-contact) measuring principle permits applications in chemically contaminated types of water and in film-forming media
- There is no need for adhesive or seals as the sensor is fully embedded in PFA
- Measurements at high conductivity values of up to 2,000 mS/cm are possible without interfering polarisation by means of the high measuring range dynamics of the inductive measuring principle
- Flexible connection to the processes is possible via a flange or immersion pipe with optional accessories

pk_6_082

Measuring range 0.02...2,000 mS/cm

Cell constant k 1.98 cm⁻¹

Measuring accuracy \pm (5 μ S/cm + 0.5% of the measured value) at T < 100 °C) \pm (10 μ S/cm + 0.5% of the measured value) at T > 100 °C)

Temperature compensation Pt 100, class A, completely extrusion-coated

Process chemical temperature 0...125 °C for use together with D1C, temperature compensation is

limited to 100 °C

Max. pressure 16.0 bar

Material PFA, completely extrusion-coated

Electrical connection 5 m fixed cable

Enclosure rating IP 67

Typical applications Production processes in the chemical industry, phase separation of

product mixtures, determination of concentrations of aggressive

chemicals.

Resistance to Electrolytic conductivity > 20 mS/cm, PFA-compatible aggressive

chemicals, deposit-forming media

Installation Fitting in pipes, tanks (sideways): G 3/4 stainless steel thread (1.4571)

or flange fitting: With the accessories: Stainless steel flange ANSI 2 inch 300 lbs, SS 316L (adaptable to DIN counter flange DN 50 PN 16).

Order no

Measuring and control D1

equipment

Measuring principle, Inductive, 2 coils. Integrated temperature measurement

technology

Installation kit for type ICT 2 sensors \rightarrow 1-133

	Graci no.
ICT 2	1023352

1.5 Turbidity Measuring Points DULCOTEST®

1.5.1 Turbidity Measuring Point DULCOTEST® DULCO® turb C

Reliable on-line measurement of turbidity with DULCOTEST® DULCO® turb C measuring points Measuring range 0 – 1,000 NTU

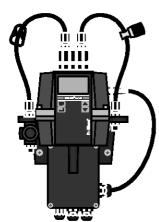
Turbidity measurements with DULCOTEST® DULCO® turb C: Compact measuring instrument that uses light scatter to measure turbidity, with a large measuring range and different designs to comply with ISO and EPA standards. Available with or without automatic cleaning.

The DULCOTEST® measuring points for turbidity in the DULCO® turb C range with versions TUC 1, TUC 2, TUC 3 and TUC 4, are compact online turbidity measuring points, consisting of a sensor, inline flow fitting and measuring device. The measuring device permits the measured value to be displayed, calibration, transmission of the measured value via a 4-20 mA signal and the indication of limit value transgressions and device faults. The measuring cuvette integrated in the measuring device enable the device to operate in the bypass of the process line. The visual measuring unit does not come into contact with the sampel medium.

The intended application is the treatment of potable water, with the DULCO® turb C able to be used in all treatment stages of raw water, from filter monitoring to measurement of fine turbidity in dispensed potable water. It is also possible to monitor the turbidity of slightly contaminated process water and waste water, as well as treated water from the food and beverage industry up to a turbidity value of 1,000 NTU. Compared with the TUC 1/TUC 2, the TUC 3 / TUC 4 measuring stations include an ultrasound-based self-cleaning function. This helps in particular to extend the service intervals particularly when used with the types of water that form films.

The measuring principle is identical to light scatter measurements. The light beam that is beamed into the measuring cuvette filled with sample water is dispersed on turbidity particles and the scattered light is measured at right angles (90°) to the beamed in light (Nephelometric measurement). The measuring unit for the turbidity measurement can be given as NTU (Nephelometric Turbidity Unit) or as FNU (Formazin Nephelometric Unit). The measuring process of types TUC 1/TUC 3 (infrared light) corresponds to the globally applicable standard ISO 7027 and the European Standard DIN EN 27027. The measuring process of types TUC 2/TUC 4 (white light) corresponds to the US American standard USEPA 180.1.

Your benefits


- Compact turbidity measuring station with integrated sensor, flow cuvette and measuring instrument saves space and is simple to install and operate.
- High dynamic measuring range between 0.02 and 1,000 NTU permits broad-based use in all stages of potable water treatment. Also ideal for monitoring waste water from clarification plants and for monitoring ruptures with filters.
- Short response times thanks to small-volume measuring cuvette.
- Long-term stable measurements, even in contaminated water, by the optional ultrasonic cleaning of the measuring cuvette.
- Fast and simple calibration on site by optionally available, pre-assembled and time-stable calibration standards.

- The measuring process in types TUC 1/TUC 3 (infrared light) corresponds to the global standard ISO 7027 and the European standard DIN EN 27027.
- The measuring process in types TUC 2/TUC 4 (white light) corresponds to the US standard USEPA 180.1.

- Potable water treatment, for all treatment steps: from raw water and filter monitoring to measuring fine turbidity in the potable water that is to be discharged
- Monitoring of turbidity in slightly polluted industrial water, waste water and water requiring treatment in the food and beverage industry up to a turbidity value of 1,000 NTU

P_DMZ_0002_SW

1.5 Turbidity Measuring Points DULCOTEST®

Technical Data

Measurement range 0 ... 1,000 NTU

Accuracy \pm 2% of the displayed value or \pm 0.02 NTU below 40 NTU, depending

on which value is the greater

 $\pm\,5\%$ of the displayed value above 40 NTU

Resolution 0.0001 NTU below 10 NTU

Response time Configurable

DisplayMultiple row LCD display with background lightingAlarm relayTwo programmable alarms, 120-240 VAC, 2 A Form C relay

Output signal $4 \dots 20 \text{ mA}, 600 \Omega, \text{ not electrically isolated: dual-isolated, degree of}$

interference, overvoltage category II

Communication interface Bi-directional RS-485, Modbus

Max. pressure Integrated pressure regulating valve regulates 1380 kPa (200 psi),

based on the flow rate

Flow 6-60 l/h Temperature $1 \dots 50 \,^{\circ}\text{C}$

Materials in contact with the

medium

Polyamide (PA), silicone, polypropylene (PP), stainless steel,

borosilicate glass

Voltage supply 100 – 240 VAC, 47 – 63 Hz, 80 VA **Hydraulic connector** Black tube, inside 4.75 mm, outside 8 mm

Ambient conditions Not suitable for operation outdoors. Maximum operating altitude

2000 m above sea level. Maximum 95% relative air humidity (non-

condensing).

Enclosure rating IP 66, NEMA 4x

Standard ISO 7027 or DIN EN 27027 with the "Infrared" version, USEPA 180.1

with the "Achromatic light" version

Dimensions H x W x D 35 x 30 x 30 cm

Shipping weight 2.5 kg

	Standard	Ultrasonic cleaning	Order no.
TUC 1	Infrared light: ISO 7027, DIN EN 27027	No	1037696
TUC 2	White light: US EPA 180.1	No	1037695
TUC 3	Infrared light: ISO 7027, DIN EN 27027	Yes	1037698
TUC 4	White light: US EPA 180.1	Yes	1037697

Spare Parts

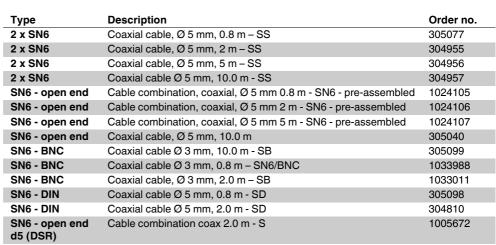
Order no.
1037701
1037877
1037878
1037702
1037703
1037879
1037885

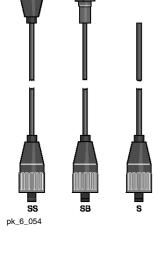
Accessories

	Order no.
Calibration set	1037699
Flow control	1037880
Air bubble trap	1037700

Sensor Technology DULCOTEST®

1.6 Accessories Sensor Technology


1.6.1 **Sensor Accessories**


General guidelines:

- Ensure that signal leads are as short as possible.
- Ensure signal leads are separated from power cables running parallel to them.
- Use pre-assembled combined signal leads wherever possible.

Measuring Lines for pH and ORP Measurement

- Pre-assembled to facilitate installation
- Factory tested to ensure function reliability
- IP 65

Measuring Line for Sensors with Vario Pin Plug-In Heads

Ready-made 6-conductor measuring line with Vario Pin plug for connection to sensor type PHEPT 112 VE.

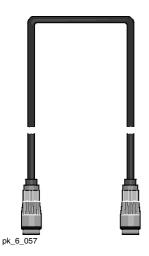
pk_6_069

pk_6_056

SN6 Coax Connector

K 74 crimping pliers and a soldering iron are required for connecting coax connectors to cables.

	Order no.
SN6 coaxial plug for 5 mm Ø coaxial signal lead	304974
SN6 coaxial plug for 3 mm Ø coaxial signal lead	304975


LK Coaxial Signal Cable

For pH and ORP measurements.

	Order no.
Coax low noise Ø 5 mm, black	723717
Coax low noise Ø 3 mm, black	723718

Please specify length with order.

Measuring lines for 4P type chlorine sensors

The measuring line is necessary for the connection of -4P sensors to the measuring/control device D_4a.

- Simple installation, as no self-assembly is required
- High operational safety due to factory functional testing
- IP 65

	Length	Order no.
	m	
Measuring line for 4P type chlorine sensors	2	818455
Measuring line for 4P type chlorine sensors	5	818456
Measuring line for 4P type chlorine sensors	10	818470

Measuring Lines for DMT Type Chlorine Sensors

The measuring line is needed for connection of DMT type sensors to the DMT transducer.

	Length	Order no.	
	m		
Universal cable, 5-pin round plug	2	1001300	
Universal cable, 5-pin round plug	5	1001301	
Universal cable, 5-pin round plug	10	1001302	

Cabling Accessories for CAN Type Chlorine Sensors

	Order no.
T-distributor M12 5 pole CAN	1022155
Termination resistor M12 coupling	1022154
Termination resistor M12 plug	1022592
Connecting cable - CAN M12 5-pole 0.5 m	1022137
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN, sold by the metre	1022160
Plug-CAN M12 5-pole screw terminal	1022156
Coupling-CAN M12 5-pole screw terminal	1022157

Measuring Lines for Pt 100 and Pt 1000

Measuring line: 2-core, conductor: 0.5 mm².

	Length	Order no.
	m	
SN6 - open-ended	5	1003208
SN6 - open-ended	10	1003209
SN6 - open-ended	20	1003210

Measuring Line for Conductive Conductivity Sensors

4-core, conductor: 0.25 mm², cable diameter: 5.7 mm, screened

Туре	Length	Order no.
	m	
Measuring line for conductive conductivity sensors	1	1046024
	3	1046025
	5	1046026
	10	1046027

2-Wire Measuring Line

2-core, conductor: 0.25 mm², cable diameter: 4 mm

For amperometric sensors and transformers, each with 4-20 mA output.

_				
n	rd	^	·n	•

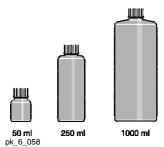
Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

Connector cable

For fluid voltage comparison in-line probe housing DLG III, DLG IV and DGMA with connector, 5 m.

Length	Order no.	

Connector cable 5 818438


Test and Calibration Kit for Inductive Conductivity

	Order no.
Test and calibration kit	1026958

1.6.2

Consumable Items for Sensors

pH Quality Buffer Solutions

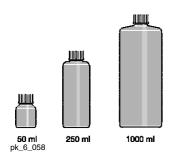
Accuracy \pm pH 0.02 (\pm 0.05 at pH 10). The shelf life depends upon frequency of use and the amount of chemical drag-in.

Alkaline buffer solutions can react with CO_2 if left open. This will affect their values, therefore close after use. Buffer solutions should be replaced a maximum of three months after opening. The solution contains a biocide to prevent bacteria forming.

	Capacity	Order no.	
	ml		
Buffer pH 4.0 – red	50	506251	
Buffer pH 4.0 – red	250	791436	
Buffer pH 4.0 – red	1,000	506256	
Buffer pH 5.0 – red	50	506252	
Buffer pH 7.0 – green	50	506253	
Buffer pH 7.0 – green	250	791437	
Buffer pH 7.0 – green	1,000	506258	
Buffer pH 9.0 – colourless	50	506254	
Buffer pH 9.0 – colourless	1,000	506259	
Buffer pH 10.0 – blue	50	506255	
Buffer pH 10.0 – blue	250	791438	
Buffer pH 10.0 – blue	1,000	506260	

50 ml pk.6.058

ORP Quality Buffer Solutions


Accuracy to ± 5 mV. Shelf life depends upon frequency of use and the strength of the chemicals in sample solutions.

Buffer solutions should be replaced a maximum of three months after opening.

Warning: The 465 mV ORP buffer solution is an irritant!

	Capacity	Oluei IIO.
	ml	
ORP buffer 465 mV	50	506240
ORP buffer 465 mV	250	791439
ORP buffer 465 mV	1,000	506241
ORP buffer 220 mV	50	506244
ORP buffer 220 mV	1,000	506245

DPD-reagents for calibration of amperometric sensors s. p. \rightarrow 2-95

3 Molar KCI Solutions

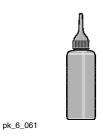
3-molar KCl solution is most suited for the storage of pH and ORP sensors (e.g. in sensor quills) and as an electrolyte for refillable sensors (e.g. PHEN, RHEN). We only recommend using the KCl solution saturated with AgCl for the old design of refillable sensors with reference electrodes without a large AgCl reservoir.

	Capac ity ml	Order no.
KCI solution, 3 molar	50	505533
KCl solution, 3 molar	250	791440
KCl solution, 3 molar	1,000	791441
KCl solution, 3 molar, AgCl saturated	250	791442
KCI solution, 3 molar, AgCI saturated	1,000	505534

Cleaning Solutions

Cleaning solution pepsin/hydrochloric acid:

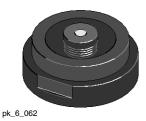
for cleaning pH sensors, the membranes of which have been contaminated with protein.


Capacity	Order no.
250 ml	791443

Conductivity Calibration Solution

For the precise calibration of conductivity sensors.

	Capacity	Order no.
	ml	
Conductivity calibration 1413 μS/cm	250	1027655
Conductivity calibration 1413 µS/cm	1,000	1027656
Conductivity calibration 12.88 mS/cm	250	1027657
Conductivity calibration 12.88 mS/cm	1,000	1027658


Electrolyte for Amperometric Sensors

	Capacity	Order no.
	ml	
Electrolyte for all chlorine sensors type CLE, CLR 1	100	506270
Electrolyte for CDM 1 and CDE 3 type chlorine dioxide sensors	100	506271
Electrolyte for CDE 2 and CDR 1 type chlorine dioxide sensors	100	506272
Electrolyte for OZE type ozone sensors	100	506273
Electrolyte for CGE/CTE/BRE type sensors	50	792892
Electrolyte for CDP type chlorine dioxide sensors	100	1002712
Electrolyte for peracetic acid sensors type PAA 1, OZR 1	100	1023896
Electrolyte for CLT 1 type chlorite sensors	50	1022015
Electrolyte for PER 1 type hydrogen peroxide sensors	50	1025774
Electrolyte for CLO 1 type chlorine sensor	100	1035191
Electrolyte for CLO 2 type chlorine sensor	100	1035480
Electrolyte for CBR 1 type chlorine/bromine sensor	100	1038017
Electrolyte for BCR 1 type bromine sensor	50	1044843

Spare Membrane Caps, Accessory Sets for Amperometric Sensors

	Capacity ml	Order no.
Membrane cap for types CLE II T, CDM 1 and OZE 1	_	790486
Membrane cap for types: CLE 2.2, CLE 3, CDE 1.2, CDE 2, OZE 2 and OZE 3	-	790488
Sensor cap for CLO 1	_	1035197
Sensor cap for CLO 2	_	1035198
Membrane cap for CGE/CTE 1 (2/5/10 ppm) and BRE 1 (10 ppm), BRE 2	_	792862
Membrane cap for CTE 1 (0.5 ppm), CBR 1, BCR 1	_	741274
Membrane cap for CDP 1, BRE 1 (0.5 / 2 ppm), CLT	_	1002710
Membrane cap for CDE 3	_	1026578
Diaphragm cap for PAA 1, CDR 1, CLR 1, OZR 1	_	1023895
Membrane cap for PER 1	-	1025776
Membrane cap for H2.10 P	_	792978
Accessory set for CGE 2/CTE 1 (2/5/10 ppm) and BRE 1 (10 ppm), BRE 2 (2 membrane caps + electrolyte)	50	740048
Accessory set for CTE 1 (0.5 ppm) (2 membrane caps + electrolyte)	50	741277
Accessory set for CLE (2 membrane caps + electrolyte)	100	1024611
Accessory set for CDP 1 (2 membrane caps + electrolyte), BRE 1 (0.5 / 2 ppm), CLT	100	1002744
Accessory set for PAA 1 and OZR 1 (2 diaphragm caps + electrolyte)	100	1024022
Accessory kit for PER 1 (2 membrane cap + electrolyte)	50	1025881
Accessory set for CDE 3 (2 membrane caps + electrolyte)	100	1026361
Accessory set for CLO 1 (electrolyte, grinding disc, plug)	100	1035482
Accessory set for CLO 2 (electrolyte, grinding disc, plug)	100	1035483
Accessory set for CBR 1 (2 membrane caps + electrolyte)	100	1038984
Accessory set BCR 1 (2 membrane caps + electrolyte)	50	1044844

Spare Parts for Dissolved Oxygen Sensors

	Measuring range	Order no.
Sensor insert for DO 1-mA-20 ppm: Membrane thickness 125 μm	2.0020.0 mg/l	1020534
Sensor insert for DO 2-mA-10 ppm: Membrane thickness 50 µm	0.1010.0 mg/l	1020535
Bracket for the sensor insert for DO 1-mA-20 ppm (with membrane protection for fish farming)		1020540
Bracket for the sensor insert for DO 2-mA-10 ppm		1020541

1.6.3

Bypass Fittings for Sensors

DLG III Type In-Line Probe Housing

To hold 2 sensors (conductivity, Pt 100, pH or ORP sensors) with PG 13.5 screw-in thread plus one sensor with R 1" screw-in thread (amperometric sensors) with integrated stainless steel pin as liquid reference potential.

On the inlet side the DLG III is equipped with a plastic ball valve for blocking and adjusting the sample water flow.

Material Material: Rigid PVC

Transparent housing cup: Polyamide Ball valve material: Rigid PVC

Max. pressure1.0 barMax. temperature55 °C

Typical applications Cooling water, slightly contaminated waste water, turbid water, no

sludge

_
P_DTZ_0031_SW

	Туре	Max. temperature °C	Order no.
DLG III A with PVC hose connectors	for PE line Ø 8/5 mm	55	914955
DLG III A with flushing connector and PVC hose connection	for PE line Ø 8/5 mm	55	1029096
DLG III B with PVC adhesive connectors	for pipe connection Ø 16 DN 10	55	914956
Assembly kit for fitting amperometric sensors	-	55	815079

pk_6_070

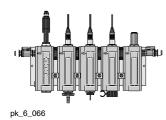
DLG IV Type In-Line Probe Housing

To hold 4 sensors (pH, ORP, Pt 100, conductivity) with PG 13.5 screw-in thread. With integrated stainless steel rod as liquid reference potential. Angle for wall mounting.

Material: Hard PVC or PP

Transparent housing cup: Polyamide

Max. pressure 1.0 bar


Connection for sample water Union with d 16/DN 10 insert

line

	Туре	Max. temperature °C	Order no.
DLG IV PP	for Ø 16/DN 10 pipe work connector	80	1005331
DLG IV PVC	for Ø 16/DN 10 pipe work connector	55	1005332

DLG Sampling Water Cup

	Order no.
DLG III sampling water cup with back flush device	1029095

DGM Modular In-Line Probe Housing

To hold conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in thread or amperometric sensors with R 1" screw-in thread.

Advantages:

- Simple installation (completely ready-mounted on a panel); max. 7 modules on a panel
- Simple retrofit extension option (see extension modules)
- Module for sample water flow control
- Quick measurement recording due to low volume of sample water
- Each completely assembled DGM is equipped with a simple sampling tap

Ball valves on both sides for shutting off the flow and for flow adjustment

Material All modules: Transparent PVC

Seals: FKM Calibration cup: PP Mounting panel: PVC white

Max. temperature 60 °C

Max. pressure 6.0 bar up to 30 °C, 1.0 bar up to 60 °C

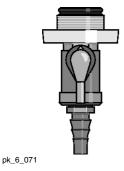
 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

Flow sensor Reed contact

Max. switch power 3 W Max. switch voltage 175 V Max. switch current 0.25 A Max. operating current 1.2 A Max. contact resistance 150 m Ω

Switching hysteresis 20% Enclosure rating IP 65

Typical applications Potable water, swimming pool water or water of similar quality with no


suspended solids

Assembly Max. 5 modules pre-assembled onto baseboard: more than

5 modules, pre-assembled onto baseboard as custom version, priced

accordingly.

FKM = Fluorine Rubber

Sampling Tap for DGM

For PG 13.5 and 25 mm modules designed as a convenient ball valve.

	Order no.
PG 13.5 sampling tap	1004737
25 mm sampling tap	1004739

Expansion Modules for DGM

For simple retrofit to an existing DGM.

	Order no.
Flow expansion module with scale in I/h	1023923
Flow expansion module with scale in gph	1023973
Flow sensor for flow expansion module (optional)	791635
Expansion module for PG 13.5 sensors	1023975
Expansion module for 25 mm sensors	1023976

Connecting Lead

For fluid voltage comparison in-line probe housing DLG III, DLG IV and DGMA with connector, 5 m.

	Order no.
Connector cable	818438

Isolation Ball Valve for DGM

To isolate the bypass from the process flow

	Order no.
Stopcock	1010380

Mounting Kit for Sensor/DGM

For mounting amperometric sensors with R 10 connection

	Order no.
Mounting kit for sensor/DGM	791818

Identity Code Ordering System for In-Line Probe Housing Modules

DGM	Series							
	Α	Series	Version	sion				
		Flow r	nonitor	modul	е			
		1	with I/h	n scale				
		2	with gp	oh scale	(US)			
		3 With flow monitor, I/h s				scale		
		4	with flo	ow moni	tor, gph	scale (L	JS)	
			Numb		G 13.5 n			
			0		t PG 13		les	
			1		G 13.5 n			
			2	1	G 13.5 m			
			3		PG 13.5			
			4		four PG 13.5 modules Number of 25 mm modules			
				0	0 No 25 mm modules 1 One 25 mm module 2 Two 25 mm modules Main material T Transparent PVC			
				1				
				2				
					ı	-		
					Sealing material			
						0	FKM A	
							Hyara 0	ulic connectors 18 x 5 hose
							1	PVC DN 10 threaded connector
							4	Hose 12 x 6
							1	Version
								0 With ProMinent® logo
								1 Without ProMinent® logo
								2 With ProMinent® logo, without mounting plate
								3 Without ProMinent® logo, without mounting plate
								Transact Townselle logo, without mounting place

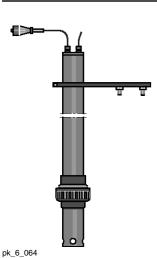
Accessories supplied:

■ Wall fastenings for PG 13.5 modules: Calibration plate, mounting kits for PG 13.5 probes

The identity code DGM A 3 2 1 T 0 0 0 describes, for example, a fully assembled configuration of a flow module with sensor, two PG 13.5 modules (e.g. for pH and ORP probes) and a 25 mm module (e.g. for CLE 3 chlorine sensor) 8 x 5 tube connectors are ready mounted.

Recommended Accessories

		Order no.
for potential equalizer plug	-	791663
Flow sensor for flow expansion module (optional)	-	791635
additional calibration cup	-	791229
PG 13.5 sampling tap	for 13.5 module	1004737
25 mm sampling tap	for 25 mm module	1004739


- Max. 7 modules possible on a mounting plate
- More on request

FKM = Fluorine Rubber

1.6.4

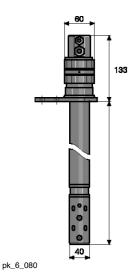
Immersion Fittings for Sensors

PVC Immersion Assembly Type ETS 1 P

Immersion fitting to hold **one** conductivity, Pt 100, pH or ORP sensor with SN6 plug-in head and PG 13.5 screw-in thread. In addition, a stainless steel rod is integrated as a liquid reference potential.

Sensor connector (inner) SN6 connector

Signal lead connector (outer) Coax SN6 male connector


Material Rigid PVC

Type of fitting Clamping flange with mounting plate

Immersion depthVariableMax. temperature55 °C

	Order no.

ETS 1 P	914950

PP Immersion Assembly Type IPHa 1-PP

Immersion fitting for holding **one** sensor (e.g. pH, ORP) with PG 13.5 screw-in thread and standard 120 mm length. The inside diameter is sized so that either pH or ORP transducers can be installed. In addition, a stainless steel rod is integrated as a liquid reference potential. The outside diameter is 40 mm. Immersion depths of 1 and 2 m are offered, however customers can independently lengthen or shorten the immersion pipe. The fitting head contains two cable connectors; measuring lines of 3-7 mm diameter can be led out.

Note: Measuring lines are not included in the scope of delivery.

Material Probe housing material: PP

Seal material: FKM

Max. temperature 80 °C

Pressure Installation at atmospheric pressure

Immersion depth Max. 1, or 2 m; variable

Immersion lance diameter 40 mm

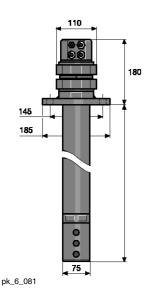
Dimensions Table: Flange

ı	Length	when	fitted	Orc	ler no).
---	--------	------	--------	-----	--------	----

	m	
IPHa 1-PP	1	1008600
IPHa 1-PP	2	1008601

Other materials available on request.

FKM = Fluorine Rubber


Accessories for Fitting Type IPHa 1

Order no.
1008624
1008626
1008628
1008630
1008632
1023368

sensor Technology DULCOTEST®

1.6 Accessories Sensor Technology

PP Immersion Assembly Type IPHa 3 -PP

To hold up to **three** sensors (e.g. pH, ORP, temperature) with PG 13.5 screw-in thread and standard 120 mm length. The inside diameter is dimensioned so that up to three pH, ORP or temperature transducers can be installed. In addition a stainless steel rod is incorporated as a liquid reference potential. The outside diameter is 75 mm. Immersion depths of 1 and 2 m are offered, however, customers can independently lengthen or shorten the immersion pipe. The fitting head contains four cable connectors, measuring lines of 3-7 mm diameter can be led out. Measuring lines are not contained in the scope of supply. Technical data is as for fitting IPHa 1, except the immersion tube diameter is 75 mm.

Material Probe housing material: PP

Seal material: FKM

Max. temperature 80 °C

Pressure Installation at atmospheric pressure

Immersion depth Max. 1, or 2 m; variable

Immersion lance diameter 75 mm

Dimensions Table: Flange

 $\begin{array}{lll} \mbox{Fixed flange} & \mbox{DN 65} \\ \mbox{Hole circle \emptyset K} & 145 \mbox{ mm} \\ \mbox{Screws} & 4 \mbox{ x M16} \\ \mbox{Thickness d}_2 & 18 \mbox{ mm} \\ \mbox{Diameter \emptyset D} & 185 \mbox{ mm} \\ \end{array}$

	Length when fitted	Order no.
	m	
IPHa 3-PP	1	1008602
IPHa 3-PP	2	1008603

Other materials available on request.

FKM = Fluorine Rubber

Accessories for Fitting Type IPHa 3

	Order no.
Immersion pipe mounting for IPHa 3-PP	1008625
Clamped threaded connector with fixed flange DN 65 according to DIN 2642 for IPHa 3-PP	1008627
Clamped threaded connector for welding connection for IPHa 3-PP	1008629
Protective (weatherproofed) cover for assembly head for IPHa 3-PP	1008631
Water-retaining basin for IPHa 3-PP	1008633
Weatherproof cover PP	1023368

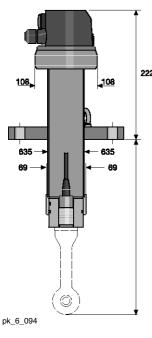
Weatherproof cover for in-line probe fitting type IMA-ICT 1

For use in immersion assembly, type IMA-ICT 1.

	Oraci iio.	
Weatherproof cover PP	1023368	

Ø d₂

Immersion Assembly Type IMA-ICT 2


To hold one inductive conductivity sensor of type ICT 2.

Material Fittings: Stainless steel 1.4404

Seal: FKM

Max. temperature125 °CMax. pressure10 barLength when fitted1 mImmersion lance diameter70 mm

Flange Stainless steel flange DN 80 PN 16

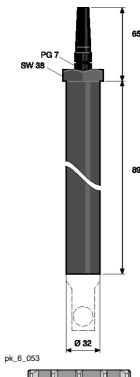
222 Dimensions Table: Flange

 Flange
 DN 65/PN 16

 Ø D
 200 mm

 Ø K
 160 mm

 Ø d₂
 8 x 18 mm

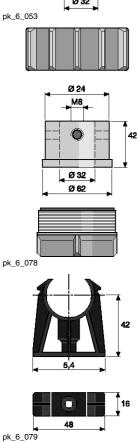

 b
 20 mm

 Ø a
 63.5 mm

 Screws
 M 16

Order no.
IMA-ICT 2 1023353

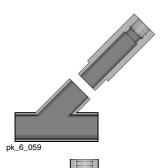
Adaptation to processes through flange installation in tank from top.


Immersion assembly type TA-LM

To hold ${\bf one}$ conductivity sensor of type LM and LMP with M 28 thread for side fasting with pipe clips (2 contained in the scope of supply) or with union nut/collar bush/screw-in part for fastening in a tank cover.

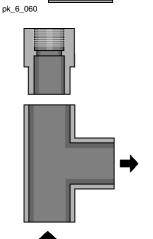
Union nut and screw-in part are to supplied by the customer (standard parts).

MaterialPPMax. temperature70 °CEnclosure ratingIP 68Max. pressure5.0Immersion lance diameter32 mmPipe length890


	Length	Order no.
	mm	
TA-LM	890	1020632
Headed bush d50	-	1020634
Extension tube 1000	910	1020633

1.6.5

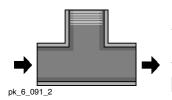
Installation Fittings / Adapters


Adapter set (T-piece and adapter)

For direct fitting of conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in pipework:

	Material	Order no.
90° T-piece DN 20	PVC	1001493
90° T-piece DN 25	PVC	1001494
45° T-piece DN 20	PVC	1001491
45° T-piece DN 25	PVC	1001492

PVC adapter set for type LM sensors

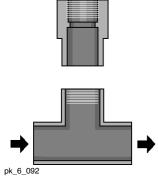

For direct fitting of type LM conductivity sensors with 3/4" screw-in thread for measuring in the flow.

For LM(P) 001 conductivity sensors

The sensors are fitted in the straight section of the T-piece.

	Material	Order no.
90° T-joint DN 25	PVC	356410
Adapter DN 25 with 3/4" thread	PVC	356923
90° T-joint DN 25	PP	358674
Adapter with 3/4" thread	PP	356953

For LM(P) 01 conductivity sensors


The sensors are fitted in the outlet of the T-piece.

	Material	Order no.
90° T-piece DN 20 - 3/4"	PVC	356455
90° T-piece DN 20 - 3/4"	PP	356471

The sensors are fitted in the outlet of the T-piece.

	Material	Order no.
90° T-joint DN 25	PVC	356410
Inline fitting DN 25 - 3/4"	PVC	1020616

Sensor Technology DULCOTEST®

1.6 Accessories Sensor Technology

116 pk_6_065

Adapter PP, PG 13.5

For direct fitting of conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in thread in, for example, pipework, tanks:

Max. temp: 80 °C (at atmospheric pressure)

EPDM sealing ring

	Material	Outer thread	Order no.	
Adapter DN 20	PP	R 1/2"	1001834	
Adapter DN 25	PP	R 3/4"	1001835	

Adapter, stainless steel, PG 13.5

For direct fitting of conductivity, Pt 100, pH or ORP sensors with PG 13.5 screw-in thread in, for example, pipework, tanks:

Max. temp: 180 °C (at atmospheric pressure)

Sealing ring, FKM (fluorine rubber)

	Material	Outer thread	Order no.
Adapter DN 20	SS	R 1/2"	1020737
Adapter DN 25	SS	R 3/4"	1020738

pk_6_093

Fixed flange ANSI 2" DN 50 SS 316L 300 lbs PN 16 Pitch circle 127 125 Screws M 16 M 16 Thickness 22.2 18 Diameter 165.1 165

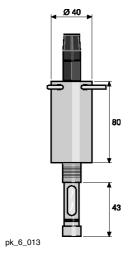
Installation kit for type ICT 2 sensors

For direct fitting of the inductive conductivity sensor ICT 2 in pipework and tanks.

	Order no.
Installation kit for type ICT 2 sensors	1023364
metamanen interest, per ter a conserve	1020001

Kit consisting of

- Stainless steel flange ANSI 2 inch 300 lbs, SS 316L (adaptable to DIN counter flange DN 50 PN 16)
- Nut 3/4" stainless steel

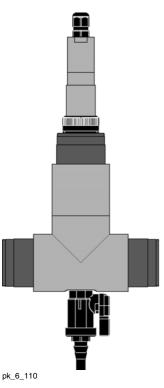

Parts that come into contact with the medium:

- Sealing disk, "2", / PTFE
- Spacer ring, PTFE
- Seal

Welding socket for T-piece (PP) type ICT 1

For connection of the inductive conductivity sensor ICT 1 in PP T-piece.

	Order no.
Welding socket G 2 1/4 inch DN40 PP incl. O-ring FKM	1023371



Retractable sensor housing for pH, ORP sensors WA-PH 1

To hold **one** pH sensor with PG 13.5 screw-in thread and length of between 110-125 mm for fitting in the storage tank or in the flow. The sensor can be removed and fitted for calibration and cleaning without draining the liquid from the storage tank or without interrupting the process in the flow.

MaterialPPMax. temperature70 °CMax. pressure5.0 barThread3/4"

	Order no.
WA-PH 1	1020631

Installation fitting INLI for chlorine sensor CLO

The installation valve permits the installation of the sensor for free chlorine types CLO (part no. 1033870, 1033871, 1033878) and the sensor for conductivity type CCT 1-mA (order no. 1081545) for operation in the process line (G 1") or in the bypass to the process line. Use either with a free outlet or return of the sample water to the process line. Sample water temperature up to 70 °C/2 bar and 40 °C/7 bar. Keep the flow constant.

 $\begin{array}{lll} \mbox{Max. temperature} & 70 \ ^{\circ}\mbox{C} \ (at 2 \ bar) \\ \mbox{Max. pressure} & 7 \ bar \ (at 40 \ ^{\circ}\mbox{C}) \\ \mbox{Flow for operation of the sensor CLO} & 400 \ ^{\circ}\mbox{Mo} \ ^{\circ}\mbox$

Material

 T-piece and fittings
 PP

 O-ring
 EPDM

 Sampling tap
 PVDF/FPM

 Stopcock
 PVDF/FPM

Reducer Stainless steel 1.4571

Connectors

SensorG 1"Sampling tapG 1/4"Hose on sampling tap6 x 4 mmSample water lineG 1"

	Order no.
Installation fitting for chlorine sensor CLO	1047238

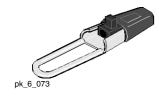
Accessories

	Order no.
Stopcock	1048213

Spare Parts

	Order no.
Sampling tap	1047266

1.6 Accessories Sensor Technology



Immersion pipe adapter for dissolved oxygen sensor DO 1-mA-20 ppm

PVC adapter for connection of the DO 1-mA-20 ppm dissolved oxygen sensor to an immersion pipe with 1-1/4 inch internal thread.

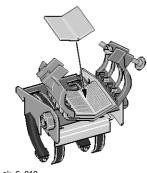
DULCOTEST® Sensors for Dissolved Oxygen See page \rightarrow 1-82

	Order no.
Immersion tube adapter for DO 1-mA-20 ppm	1020537

Mounting bracket for cable of dissolved oxygen sensor DO 1-mA-20 ppm

The stainless steel and polyamide cable bracket is used to guide and fix the sensor cable inside the DO 1-mA-20 ppm dissolved oxygen sensor.

DULCOTEST® Sensors for Dissolved Oxygen See page → 1-82


	Order no.
Cable bracket for DO 1-mA-20 ppm	1020539

Pipe adapter for dissolved oxygen sensor DO 2-mA-10 ppm

The PVC adapter is a spare part for the DO 2-mA-10 ppm dissolved oxygen sensor. The DO 2-mA-10 dissolved oxygen sensor can be adapted to fit metric or imperial tubing by fitting half of the adapter with 1-1/2 inch outside diameter, the other half with 50 mm outside diameter and at both ends with 1-1/4 inch internally threaded tube attached by means of a corresponding 45° standard angle piece (provided by the customer).

DULCOTEST® Sensors for Dissolved Oxygen See page → 1-82

Order no.
1020538

Railing bracket for plastic pipes

Stainless steel and plastic bracket for fixing of plastic tubes with 50 mm outside diameter to rails (e.g. on pools in sewage plants). Spare part for "dissolved oxygen" sensor: DO 2-mA-10 ppm.

DULCOTEST® Sensors for Dissolved Oxygen See page → 1-82

	Order no.
Bailing bracket for DO 2-mA-10 ppm	1020536

pk_6_010

1.7 Application Examples

Application and Ordering Examples for the DULCOMETER® Compact See page $\rightarrow 2\text{-}33$

D1Cb and D1Cc Application and Ordering Examples See page \rightarrow 2-24

DACb application and ordering examples See page \rightarrow 2-8

Application Examples: Treatment of Swimming Pool Water in Public Baths See page

Application Example: Measurement of Key Chemical Water Parameters at Various Points in the Treatment of Drinking Water See page

2.0 Measuring and Control Units DULCOMETER®

2.0.1 Measuring and Control Units DULCOMETER®

DULCOMETER® controllers provide maximum process reliability with a comprehensive range of uses. Different measured variables can be precisely determined. Depending on the application, the control action of the DULCOMETER® controllers are precisely adapted to the respective requirements. Different mountings enable versatile use.

The advantages at a glance:

- excellent measuring reliability, for example by means of symmetrical input with pH/ORP
- excellent measuring precision, for example by means of high-ohmic input with pH/ORP
- minimal interference resistance, for example by AC voltage interference suppression
- Two-wire system for interference-resistant measurement
- Versatile use, thanks to the many options and different mountings

DULCOMETER® controllers, DULCOTEST® sensors and ProMinent® metering pumps – thereby ideally coordinating the entire control circuit with measurement, regulation, metering and registration.

DACb

Compact D1Cb D1Cc

Controller selection table

Measured variablen

Function

pH ORP

0.1.1	•	•	•	•
Chlorine	V	V	~	V
Chlorine dioxide	V		~	~
Chlorite	V		V	~
Bromine	v		~	~
Conductivity conductive	V	V		
Conductivity inductive		V		
Conductivity via mA	V		V	~
Peracetic acid	/		~	~
Hydrogen peroxide	✓		V	~
Ozone	/		~	V
Dissolved oxygen	✓		V	~
Fluoride			~	~
0/420 mA standard signal general measured variables	V		~	~
Power supply				
90 – 253V	•	•	~	~
~ 24 V DC	V			
Method of installation, degree of protection				
Wall mounted IP 65			~	
Control panel mounting IP 54, 1/4 DIN				~
Combination housing (wall mounting, pillar assembly) IP 66 + IP 67. Installation on control panel IP 54	V	•		
Measurement				
Number of measuring channels	2 or 3 optionally available	1	1	1
Sensor monitoring of pH	✓	✓	V	~
Temperature compensation for pH	/	V	~	~
Temperature compensation for conductivity		✓		
pH compensation for chlorine	✓			
Control				
PID controller	✓	✓	/	~
Monodirectional controller (e.g. with pH acid or alkali)	V	V		
Bidirectional controller (e.g. with pH acid and alkali)	•		•	•
Control inputs				
Digital control inputs	√ , 4/7	√ , 1	√ , 1	√ , 1

2.0 Measuring and Control Units DULCOMETER®

Function	DACb	Compact	D1Cb	D1Cc
Control outputs				
Control of metering pump by pulse frequency	√ , 2/4	~	√ , 2	√ , 2
Control of solenoid valve/motor-driven metering pump	~	~	/	~
Interference variable processing (flow) via mA	~			
Interference variable processing flow via frequency (e.g. of contact water meter)	/			
Metering time monitoring with deactivation of the control variable	•	/	/	•
Output relay configurable as limit value relay	√ , 2	√ , 1	√ , 2	√ , 2
Cycle timer	√ , 2		√ , 2	√ , 2
Real time timer	√ , 2			
Outputs				
Analogue output 0/420 mA	√ , 2/3	√ , 1	√ , 1	√ , 1
Special functions				
Data logger with SD card	✓			
Web server via LAN	V			
Parameter set switch-over via timer	✓			
Parameter set switch-over via contact	V			
PROFIBUS® DP	✓			
Modbus RTU	✓			
Subsequent extension of functions via enabling code	/		~	~
Operating hour counter	V		V	V

2.1.1

Controller DULCOMETER® diaLog DACb

Water parameter analysis made easy – with the DULCOMETER® diaLog DACb

Do you wish a simple controller for water analysis? One that is easy to operate and with which you can freely select between all common measured variables per channel? There is one: our all-rounder DULCOMETER® diaLog DACb! What is more, it is Ethernet-/LAN-capable and can be ideally integrated into existing networks.

P_DM_0031_SW1

The controller DULCOMETER® diaLog DACb is our compact all-rounder for water analysis. With its specially designed functionalities, e.g. processing or interference variables and switchover of control parameters, it closes the control circuit between DULCOTEST® sensors and ProMinent® metering pumps. The two measuring and control channels of the DULCOMETER® diaLog DACb can be individually configured to meet customer requirements. Everything that you need for the reliable treatment of industrial and process water, potable water as well as swimming pool water.

Your benefits

- Simple operation thanks to a clearly arranged display
- More for your money: two measuring and control channels now in the basic configuration
- Versatile use: all common measured variables can be set per channel and subsequently altered
- Control from everywhere: LAN-capable and convenient remote access via integrated web server
- Maximum flexibility: individually adjustable to different operating statuses, e.g. Day-Night mode
- Excellent process safety and reliability: avoidance of incorrect metering by time-based monitoring of control variables
- Global application options: 24 operating languages can be selected and changed
- Minimal time and effort: effortless duplication of device settings
- Precise monitoring and documentation: Event, calibration and measured data logger with easy-toaccess SD memory card
- Optimum communication: Integration into customer networks by means of different field bus systems (PROFIBUS® DP and Modbus RTU, PROFINET)

Technical Details

- Measured variables: pH, ORP, chlorine, chlorine dioxide, chlorite, bromine, conductivity, peracetic acid, hydrogen peroxide, ozone, dissolved oxygen and fluoride
- Method of installation, degree of protection: Combination housing (wall mounting, control panel mounting, pillar assembly) IP 67 and IP 66
- Control: two measuring and control channels, each with independent monodirectional PID controller (optional: two bidirectional PID controllers)
- 24 V DC protective low voltage supply e.g. by means of solar system or in the wet area of waterworks
- Temperature compensation for pH and for chlorine dioxide process sensor CDP, pH compensation for chlorine
- Digital inputs for the processing of control signals, e.g. of process water limit contacts, remote stop control and to monitor the liquid levels in chemical storage tanks
- Control outputs for electronically controlled metering pumps and solenoid valves
- Interference variable processing: simple control of water parameters in flowing water by processing the flow in the control algorithm
- Adaptation of the controller setpoint to changed process conditions is possible via remote control by means of the mA signal of a PLC Programmable Logic Controller or with higher requirements via the field bus option

Field of application

- Measurement and control of water parameters in industrial and process water treatment plants
- Monitoring of the water parameters potable water
- Measurement of pH value and disinfection parameters in the food and beverage industry
- Measurement and control of the hygiene parameters in swimming pools
- Monitoring of the chlorine dioxide concentration in systems for legionella control and prevention, for example in schools, hotels or hospitals
- Measurement of the disinfection parameters of irrigation and sprinkler irrigation water in market gardens

Technical Data

Measuring range mV connection type:

pH: 0.00 ... 14.00

ORP voltage: -1500 ... +1500 mV

Connection type mA (amperometric measured variables. measuring ranges corresponding to the sensors):

Chlorine

Chlorine dioxide Chlorite **Bromine** Ozone

Hydrogen peroxide (PER sensor)

Hydrogen peroxide (PEROX sensor with PEROX transducer V2

Order No. 1047979) Peracetic acid Dissolved oxygen

Connection type mA (potentiometer measured variables, measuring ranges corresponding to the transmitter):

ORP voltage Fluoride

Conductivity (measuring ranges corresponding to the

transmitters):

via Transmitter 0/4 ... 20 mA

Temperature:

via Pt 100/Pt 1000, measuring range 0 ... 150 °C

Resolution pH: 0.01

ORP voltage: 1 mV Temperature: 0.1 °C

Amperometric analysis (chlorine etc.): 0.001/0.01 ppm, 0.01 vol.%,

0.1 vol.%

Accuracy 0.3% based on the full-scale reading Measurement input pH/ORP (input resistance > $0.5 \times 10^{12} \Omega$)

Temperature compensation Pt 100/Pt 1000 for pH, chlorine dioxide (CDP) sensor and fluoride

Correction range 0 ... 100 °C

Disturbance signals

chlorine

pH compensation range for Sensor CLE 3 and CLE 3.1: 6.5 ... 8.5, sensor CBR: 6.5 ... 9.5

Flow via 0/4 ... 20 mA or contact water meter 1 - 500 Hz, the interference

variable acts on both channels

Control characteristic P/PID control

Control

2 x bidirectional control

Analogue outputs 2 (3) x 0/4 ... 20 mA electrically isolated, max. load 450 Ω , range and

assignment (measured, correction, control variable) can be set

Control outputs 2 x 2 pulse frequency outputs for metering pump control

2 relays (limit value, 3-point step or pulse length control)

Alarm relay 250 V ~3 A, 700 VA contact type changeover contact

Digital control inputs 2 (5) as a remote control input for the functions pause control / sample water fault, parameter set switch-over, level monitoring of chemical tanks

Electrical connection 90 - 253 V, 50/60 Hz, 25 VA, 24 V DC Field bus connection PROFIBUS®-DP, Modbus RTU, PROFINET

Ambient temperature 0 ... 50°C (for use indoors or with a protective enclosure)

Wall-mounted: IP 66 and IP 67 (NEMA 4X) **Enclosure rating**

Installation in the control cabinet: IP 54 for control cabinet door CE, MET (corresponding to UL according to IEC 61010)

Tests and approvals Housing material PC with flame proofing equipment **Dimensions** 250 x 220 x 122 mm (WxHxD)

Weight 1.3 kg

Standard equipment

Basic measuring variable

- AA: 2 measuring channels with freely selectable measured variables for mA. Including interference variable and pH compensation for chlorine
- VA: 2 measuring channels with freely selectable measured variables for mV (pH and ORP) and mA. Including interference variable and pH compensation for chlorine
- VV: 2 measuring channels for pH and ORP.

- L3: 2 measuring channels for the measured variable conductive conductivity
- PID controller with pulse frequency-based metering pump control for 2 metering pumps.
- 2 analogue outputs for measured value, correction value or control variable (dependent on the optional equipment).
- 4 digital inputs for sample water fault detection, pause and parameter switch-over.
- 2 output relays selectable as limit value, cycle timer, real-time timer or intermittent programmable control output (depending on the optional equipment).
- Measured variables and language selection during commissioning.
- Temperature compensation of the pH, chlorine dioxide (CDP) and fluoride measurement via Pt 100/Pt 1000
- 22 operating languages: all European languages as well as Chinese, Russian, Thai, Korean. The operating language is selected during commissioning and can be changed at any time by a keyboard shortcut. The documentation language is selected via the identity code. A data carrier is also supplied that contains all other languages.
- Saving and transfer of device parametrisation by means of the SD card.
- Calibration and event data logger (without SD card, data is saved in the controller).
- Interference variable processing (flow) via frequency (contact water meter).
- Subsequent upgrade of the software function by means of an activation key or firmware update.

Optional equipment for 3rd pH measuring channel

Package 2

- 3rd mA output
- Two additional metering pumps control
- External remote setpoint via an analogue signal for channel 1.

Package 3

- Third complete measuring and control channel with PID controller.
- 3rd analogue output for measured value, correction value or control variable (depending on the optional equipment).
- 3 additional digital inputs, e.g. for level monitoring, pause and sample water alarm for channel 2.
- Temperature compensation of the pH, chlorine dioxide (CDP) and fluoride measurement.

Package 4

Combination of packages 2 and 3 (only one channel for amperometric sensors is available with the interference variable mA).

Communication options

- Measurement data logger with SD card
- Visualisation of the measured data using a web server via LAN NS a PC/tablet PC and web browser
- PROFIBUS®-DP, Modbus RTU

Hardware extension

Protective RC circuit for output relay: Protects the output relay if inductive loads are to be switched (e.g. solenoid valves or motors). Not with 24 V DC electrical connector.

A complete measuring point comprises:

- Transmitter/controller DACb (see identity code)
- Fitting: DGMa..., DLG III ..., immersion fitting
- pH sensor (identity code-dependent)
- ORP sensor (identity code-dependent)
- Chlorine, chlorine dioxide, chlorite, bromine, dissolved oxygen sensor
- Transducer for pH or ORP dependent on the cable length (> 10 m)
- Sensor cable

(for further information: Immersion Fittings see page \rightarrow 1-128; pH Sensors With SN6 or Vario Pin Plug-In Head see page \rightarrow 1-10; ORP Sensors with Fixed Cable see page \rightarrow 1-43; Sensors for Chlorine see page \rightarrow 1-49; Transmitter 4 ... 20 mA (Two-Wire System) see page \rightarrow 2-96; Sensor Accessories see page \rightarrow 1-119)

Accessories for controller DULCOMETER® diaLog DACb

Order no.
1024105
1024106
1024107
1036885
1041095

1.1.2018 Product Catalogue 2018 2-5

2.1.2

Identity Code Ordering System for diaLog DACb, Wall Mounting IP 67

DACh	Mount	ing typ	е										
	W		ounting	1									
	s		_	anel mounting									
	آ	Design	•		5								
		00		roMinen	t logo								
		00		ating vo									
			4	124 V D									
			6		230 VAC	: 50/60 H	- 17						
					measu								
				VA				easuring	innut e	a nH/c	hlorine	2 numr	os PID
							els, mV/mA measuring input, e.g. pH/chlorine, 2 pumps PID els, mA/mA measuring input, e.g. chlorine dioxide/chlorite, 2 pumps PID and Pt 100/Pt 1000						
				VV									O and Pt 100/Pt 1000
				L3									4.14.1.100/11.1000
						hannels, 2 x conductive conductivity and Pt 100/Pt 1000 tended functions							
					0	Inone							
					2					le (mA)	or exter	nal rem	ote setpoint via mA or pH compensation for chlorine
					3		ting on c			+ contr	ol addit	tionally ?	2 pumps, additionally 3 control inputs
					4		ge 3: triii ge 4: Co						2 pumps, additionally 3 control inputs
							are defa						
						0		ault setti	-				
						1 -		neutralis					
						2	-	eutralisa P meas		/oontrol			
						4	1.	measur					
						5	1. ~	0_2 meas					
						6						nce varia	able
Docum	nentatio	n langi	nade			7		RP mea					
00	no doc					Р	pH/OR	P-Privat	e Pool				
DE	Germa	n				S	Defaul	setting	for swin	nming p	ool		
EN	English	1				Т	pH/OR	P/chlori	ne pool				
ES	Spanis							ction o				oles	
FR	French						0		sor inpu				
BG	Bulgari	ian					1					axial con	
CS	Czech									· / actua	tor cor	nnector	s
DA	Danish							0	none				
SV	Swedis									-	on inte	rface	
ET	Estonia	an							X	none	- DT!!		1
EL Fl	Greek Finnish								A B			termina , termin	
HR	Croatia								E				aı connection via M12 C coded
HU	Hunga								G		t (2xM1		CONTROCTION VIA IVITA O COUCU
IT	Italian	iiaii							٦	Data lo	٠,	<u>-)</u>	
JA	Japane	ese								Data id		a logger	
ко	Korear									1		ata logge	
LT	Lithuar												ension
LV	Latviar										0	none	
NL	Dutch										1		tive RC circuit (relay)
PL	Polish											Appro	* **
PT	Portug	uese										00	none
RO	Roman	nian										01	CE (Standard)
SL	Sloven												Certificates
SK	Slovak	ian											0 none

2.1.3 Retrospective function extension for the diaLog DACb measuring and control system

Prerequisite:

Channel 2 must be available in the controller. Missing hardware must be retrofitted in the factory.

Channel 2 can be enabled from either package 2 or package 3. The packages correspond to the ones also described in the identity code. The data logger function can always be enabled.

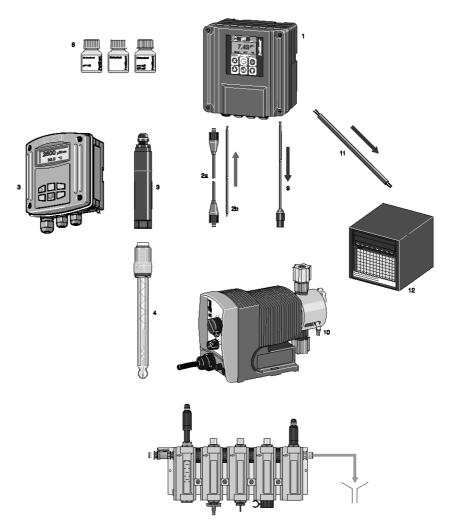
The activation code can only be used for the relevant controller with the specified serial number.

The activation code can be transmitted via email and is then read into the controller from the SD card or entered over the controller keypad. The enabled function is then immediately available and need only be activated and parametrised.

The following information must be available to determine the activation code:

- The serial number of the controller in question (see operating menu under "Diagnostics", "Device information") and
- the desired upgrade package.

		Order no.
Based on package 2	Upgrade: Package 2 to package 3	1047874
	Upgrade: Package 2 to package 4	1047875
Based on package 3	Upgrade: Package 3 to package 4	1047876
		Order no.
Based on 0=no data logger	Upgrade: Data logger	1047877


2.1.4

DACb application and ordering examples

The application examples contain typical combinations of components for measuring stations in applications in the areas of swimming pool, drinking water, waste water and the food industry.

Components of a complete measuring and control system

- Measuring and control device e.g. DACa
- 2a Measuring line e.g. coaxial cable for pH and ORP sensors, Pt 100/Pt 1000
- 2b Measuring line 2-core for amperometric sensors with mA signal and transducer
- 3 Transducer 4 ... 20 mA (for two wire system), DMTa or pH V1
- 4 Sensor, e.g. pH single-rod sensor
- 5 Fitting e.g. in-line probe housing type DGMA
- 6 Stopcock sample water line
- 7 Sampling tap
- 8 Buffer solutions (pH/ORP)
- 9 Signal cable (metering pump control)
- 10 Actuator e.g. Beta® metering pump

AP_MSR_0006_SW3

Examples for:

- 1 Treatment of swimming pool water and decorative wells/fountains
- 2 Potable water monitoring
- 3 Monitoring of waste water (pH neutralisation)
- 4 Applications in the food industry
- 5 Odour reduction during exhaust air scrubbing

2.1.5 Application Examples, Treatment of Swimming Pool Water

Private swimming pool with measurement and metering of acid and chlorine based on the ORP value

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the ORP value (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor).

Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for pH and ORP diaLog DACb with data logger and protective RC circuit	→ 2-3	DACa00613000011010EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Cable combination coaxial 2 m-SN6 Ø 5 mm, pre-assembled	→ 2-70	1024106
1	ORP sensor RHES-Pt-SE	→ 1-33	150703
1	Cable combination coaxial 2 m-SN6 Ø 5 mm, pre-assembled	→ 2-70	1024106
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-126	DGMa 320T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Simple operation, controller with plain text operator guidance in 24 languages
- Recording of measured data
- Automatically correct pH value and correct disinfectant concentration
- All products are selected to operate correctly with each other

Private swimming pool with measurement and metering of acid and bromine

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and bromine (BCDMH) is used as a disinfectant, that is dissolved and dosed via a bromine sluice. The disinfectant is to be regulated on the basis of a bromine measurement (a comparative calibration using a DPD 1 measuring unit should be carried out at regular intervals, likewise calibration of the pH sensor). The measured values are to be recorded. A DF2a peristaltic pump for pH correction and the solenoid valve of a bromine sluice are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for pH and bromine diaLog DACb with data logger and protective RC circuit	→ 2-3	DACa00613000011010EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-119	1005672
1	Bromine sensor BCR 1-mA-10 ppm	→ 1-70	1041698
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-126	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled Bromine sensor BCR 1-mA-10 ppm Control line LiYY 2 x 0.25 mm² Ø 4 mm (e.g. sensor) In-line probe housing DGMa with sample water scale and limit switch	→ 1-119 → 1-70 → 1-121 → 1-126	1005672 1041698 725122 DGMa311T000

- Simple operation, controller with plain text operator guidance in 24 languages
- Recording of measured data
- Automatically correct pH value and correct concentration of disinfectant
- All products are matched

Measuring and Control Technology

Controller DULCOMETER® diaLog DACb

Private swimming pool with measurement of free chlorine and pH value

Tasks and applications

The pool water of a frequently-used private indoor swimming pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the chlorine concentration (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). Beta® 4b metering pumps are to be controlled.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for pH and chlorine diaLog DACb with data logger	→ 2 - 3	DACa00613000010010EN
1	Chlorine sensor CLE 3-mA 2 ppm	→ 1-51	792920
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Cable combination coaxial 2 m-SN6 Ø 5 mm, pre-assembled	→ 2 - 70	1024106
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-126	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- Automatically correct pH value and direct measurement and control of chlorine concentration
- All products are matched

Oxidation of well water with hydrogen peroxide

Tasks and applications

The water of a decorative well or fountain is to be disinfected/oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60% the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for hydrogen peroxide diaLog DACb with data	→ 2-3	DACa00610000010010EN
	logger		
1	Hydrogen peroxide sensor PER 1-mA-50 ppm	→ 1-86	1030511
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are matched

2.1.6 Application Examples, Potable Water Monitoring

Measurement and control of ozone in water works for pre-oxidation of the raw water

Tasks and applications

In the treatment of potable water in a water works a measuring and control station is needed at the preoxidation stage at the inlet to the water works for the ozone oxidising and disinfectant agent used. With a constant flow, the fluctuating attrition of the ozone, caused by the changing quality of the raw water, is to be compensated on the basis of the measured variables. The following conditions must be met:

- Oxidising agent / disinfectant: Ozone with a concentration to be set to 0.2 ppm
- Raw water: Surface water with a pH of 7.3-7.6 and a temperature of 5 °C-17 °C
- Installation of the measuring station in the bypass of the process flow
- Alarm to signal transgression of upper and lower limit values
- Display of measured results and calibration via a measuring instrument in the proximity of the bypass installation and transmission of the measured value to the control desk via an electrically isolated 4-20 mA signal
- Alarm to signal lowering of sample water flow

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for ozone diaLog DACb with data logger	→ 2 - 3	DACa00610000010010EN
1	Ozone sensor OZE 3-mA-2 ppm	→ 1-80	792957
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Precise, self-regulating process management with changing raw water quality by the completely automated measuring and control station with variable-dependent control of ozone concentration
- Reliable, safe operation thanks to alarm signalling in the event of limit value transgression and lowering
 of sample water flow
- The control is monitored by transmission of the measured value as an electrically isolated 4-20 mA output signal by the controller to the control panel

Waterworks with control measurement of chlorine

Tasks and applications

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A magnetic flow meter with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for chlorine diaLog DACb with data logger	→ 2-3	DACa00610000010010EN
1	Chlorine sensor CLE 3-mA-0.5 ppm	→ 1-51	792927
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are matched

Measurement and control of free chlorine with feedforward control in a waterworks

Tasks and applications

A measuring and control station is needed for the "free chlorine" disinfectant in the treatment of drinking water in a water works. Metering is largely proportional to the flow (magnetic flow meter 4...20 mA). However control can also be proportionately variable-dependent to compensate for peaks of chlorine loss, for instance in the event of rainfall. The following conditions must be met:

- Disinfectant: free chlorine with an adjustable concentration of 0.2 mg/l
- Raw water: source water with a pH of 7.0-7.5 and a temperature of 1-13 °C
- Installation of the measuring station in the bypass of the process flow
- Display of measured results and calibration via a measuring instrument in the proximity of the bypass installation and transmission of the measured value and control variable to the control panel via PROFIBUS®-DP
- Alarm to signal lowering of sample water flow (via PROFIBUS®-DP)
- Alarm signalling the transgression of the preset upper and lower limit values (via PROFIBUS®-DP)
- The measured data are to be recorded in the controller.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for chlorine with interference variable processing diaLog DACb with data logger and PROFIBUS-DP	→ 2-3	DACa00612000410010EN
	dialog DACD with data logger and PHOPIBOS-DP		
1	Chlorine sensor CLE 3-mA-0.5 ppm	→ 1-51	792927
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Precise, self-regulating disinfection by a fully automated measuring and control station
- Flow-proportional control can be safeguarded by proportionate variable-dependent control to combat peaks of attrition
- Reliable, safe operation thanks to alarm signalling in the event of limit value transgression and lowering
 of sample water flow
- The control is monitored by transmission of the measured value and control variable via the PROFIBUS®-DP to the control panel

Waterworks with measurement of chlorine dioxide

Tasks and applications

The chlorine dioxide concentration in the outlet of a water works is to be monitored. Metering is in the first place performed with the volume proportional to the water flow. A MID with a 4 – 20 mA output signal is used.

If the proportionality is insufficient, then up to 20% of the control variable is made available by the controller in an additive manner (a calibration of the chlorine dioxide sensor by means of a DPD 1 comparative measurement is required at regular intervals). The DACa/DACb controller pulse frequency is used to control the ProMinent Bello Zon® chlorine dioxide generation system.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for chlorine dioxide diaLog DACb with data logger	→ 2-3	DACa00610000010010EN
1	Chlorine dioxide sensor CDE 2-mA-0.5 ppm	→ 1-74	792930
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Simple operation, controller with plain text operator guidance
- Recording of measured data
- Primarily, chlorine dioxide metering proportional to flow. Where this is not possible additive measured-value dependent control
- All products are matched

Legionella prevention in public buildings

Tasks and applications

The chlorine dioxide and the chlorite concentration are to be monitored and recorded in the fresh water distribution system of a public building for the prevention of legionella. Chlorite is a disinfection by-product of chlorine dioxide that arises if germs have been killed. The chlorite concentration is limited using a limit value of 0.2 mg/l.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for pH and chlorine diaLog DACb with data logger	→ 2-3	DACa00613000010010EN
1	Chlorine dioxide sensor CDE 2-mA-0.5 ppm	→ 1-74	792930
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	Chlorite sensor CLT 1-mA-0.5 ppm	→ 1-78	1021596
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa302T000
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Simple operation, controller with plain text operator guidance
- Recording of all measured data
- Upon exceeding of the chlorite limit value, a limit value relay switches the chlorine dioxide metering off or to a basic load.
- All products are matched

Oxidation of well water with hydrogen peroxide

Tasks and applications

The water drawn from a deep well is to be oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60% the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for hydrogen peroxide diaLog DACb with data	→ 2-3	DACa00610000010010EN
	logger		
1	Hydrogen peroxide sensor PER 1-mA-50 ppm	→ 1-86	1030511
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Hygienic trouble-free well water
- Simple operation, controller with plain text operator guidance
- Recording of measured data
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are matched

2.1.7

Application Examples, Waste Water Monitoring

Neutralisation of the waste water of an industrial plant (non-steady receipt of water)

Tasks and applications

Turbid waste water with a significantly fluctuating pH value and intermittent occurrence is to be neutralised in batch operation. The waste water is pumped into an interim tank and is neutralised using acid and alkali. The pH value should be measured and regulated in a stirred batch storage tank. The pH sensor should be fitted at a typical position on the tank using an immersion fitting. Once it has been neutralised the water is pumped onwards. and the pH value should be controlled again in this pipe.

The DACb controller data logger automatically records the pH values and temperatures of both pH measuring points. In parallel, a digital input is used to record the end position switch of the storage tank outlet. In this way, it can be precisely determined how high the pH value was at the time of draining. Any limit value transgressions that may have occurred are also recorded in the data logger. If a limit value transgression occurs, the shut-off valve closes automatically. A neutral zone is additionally defined in the controller. If the pH value comes within this neutral zone, no control takes place. There may be solids in the waste water.

Components of the pH measuring/control station in the collection tank

Quantity		See page	Order no.
1	2-channel controller for pH and ORP diaLog DACb with data logger and protective RC circuit	→ 2-3	DACa00613000011010EN
1	Cable combination coaxial 5 m-SN6, shield connection	→ 1-119	1024107
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-16	1001586
1	Temperature sensor Pt 100 SE	→ 1-46	305063
1	Cable combination of control line 5 m SN6, open end (Pt 100, Pt 1000)	→ 1-120	1003208
1	Immersion fitting with 3 sensor slots IPHa 3-PP	→ 1-129	1008602
1	Cable combination coaxial 5 m - SN6 - pre-assembled	→ 1-129	1008633

Components of the measuring/control station in the outlet

Quantity See pag	je Oraer no.
1 DULCOTEST® pH sensor PHER 112 SE → 1-16	1001586
1 Cable combination coaxial 5 m-SN6, shield connection → 1-119	1024107
1 Retractable process assembly WA-PH 1 → 1-134	1020631

Note: the use of other sensors is also possible depending on the quality of the waste water (see Selection Guide for pH Sensors DULCOTEST®→ 1-1)

With seriously contaminated waste water with solid matter content

Quantity	Name	See page	Order no.
1	pH sensor PHEX 112 SE	→ 1-17	305096

With clear waste water

Quantity	Name	See page	Order no.
1	pH sensor PHEP 112 SE	→ 1-13	150041

- Simple operation, controller with plain text operator guidance in 24 languages
- Recording of all measured data and the opened or closed status of the shut-off valve
- pH limit value monitoring of drainage water
- pH control and final checking in a controller
- All products are selected to operate correctly with each other

Neutralisation of the waste water of an industrial plant (continuous receipt of water)

Tasks and applications

In an industrial plant, waste water arises in a continuous manner (continuous production), and can be acidic or alkaline. The water runs through a manifold. The flow volume is measured using a flow meter because the flow varies within wide limits. There is a pH sensor with a pH sliding retractable assembly in the pipework with which the pH value is adjusted. Further along the pipework the pH value is used once again as a final check.

The flow signal of the flow meter is evaluated as a multiplicative interference variable in the DACb controller, i.e. this flow signal = disturbance variable is used to evaluate the controller control variable (control of the metering pumps) in a flow dependent manner. In the event of a similar control deviation (deviation of the actual from the setpoint), for example, with a reduced flow less acid or alkali is necessary than with an increased flow. Provision of this information makes it easier for the controller to adhere to the setpoint. In the absence of this flow information, a PID controller alone could not perform such a task or could only perform it with great difficulty. A neutral zone is additionally defined in the controller. If the pH value comes within this neutral zone, no control takes place.

There may be solids in the waste water.

The DACb controller data logger automatically records the pH values and temperatures of both pH measuring points. Any limit value transgressions that may have occurred are also recorded in the data logger.

Components of the pH measuring/control station in the collection tank

Quantity		See	Order no.
		page	
1	2-channel controller for 2 x pH and temperature diaLog DACb with data logger	→ 2-3	DACa00614000011010EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-16	1001586
1	Cable combination coaxial 5 m-SN6, shield connection	→ 1-119	1024107
1	Retractable process assembly WA-PH 1	→ 1-134	1020631

Components of the measuring/control station in the outlet

Quantity		See page	Order no.
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-16	1001586
1	Cable combination coaxial 5 m-SN6, shield connection	→ 1-119	1024107
1	Retractable process assembly WA-PH 1	→ 1-134	1020631

Note: the use of other sensors is also possible depending on the quality of the waste water (see Selection Guide for pH Sensors DULCOTEST®→ 1-1)

With seriously contaminated waste water with solid matter content

Quantity	Name	See page	Order no.
1	pH sensor PHEX 112 SE	→ 1-17	305096

With clear waste water

Quantity	Name	See page	Order no.
1	pH sensor PHEP 112 SE	→ 1-13	150041

- Simple operation, controller with plain text operator guidance in 24 languages
- Processing of the flow signal as a disturbance variable
- Recording of all measured data and the opened or closed status of the shut-off valve
- pH limit value monitoring for the waste water
- pH control and final checking in a controller
- All products are selected to operate correctly with each other

2.1.8

Application Examples in the Food Industry

Bottler disinfection in the beverage industry

Tasks and applications

Continuous disinfection of the filler with disinfection solution means this sensitive part of the bottling process is reliably sterilised. Continuous spraying with disinfectant solution means high hygiene requirements are fulfilled.

The disinfectant solution comprises water with additional chlorine dioxide. The concentration of the chlorine dioxide is measured and set to the desired value using the DACb controller. From time to time the chlorine dioxide concentration must be increased.

An alternative parameter set can be activated in the DACb via a switch input. In this way, a switchover, regularly required, can be carried out smoothly without the need for continual adaptation of the setpoint in the controller menu.

The measured data is to be recorded.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for chlorine dioxide diaLog DACb with data logger	→ 2-3	DACa00610000010010EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	→ 1-76	1033393
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Simple operation, controller with plain text operator guidance in 24 languages
- Recording of all measured data
- Switchover of control parameters via an external potential-free contact
- All products are selected to operate correctly with each other

Irrigation water disinfection for useful plants

Tasks and applications

The irrigation water from e.g. salad seedlings is drawn from a well. The water could contaminated with germs which could harm the salad seedlings. To prevent this, the irrigation water is disinfected using chlorine dioxide. The irrigation water requirement varies. Consequently, the irrigation water volume flow is measured. The irrigation water volume flow is used as an additive disturbance variable to control the adding of chlorine dioxide dependent on the required chlorine dioxide concentration and the irrigation water flow.

All measured data are to be recorded. The irrigation water may contain suspended matter.

Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for chlorine dioxide with additive interference variable processing diaLog DACb with data logger	→ 2-3	DACa00612000010010EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	→ 1-76	1033393
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Simple operation, controller with plain text operator guidance in 24 languages
- Processing of the irrigation water flow signal as an interference variable
- Recording of all measured data
- Switchover of control parameters via an external potential-free contact
- All products are selected to operate correctly with each other

2.1.9

Odour Reduction Application Examples (Clarification Plants)

Exhaust air scrubbers, clarification plants or fragrance production


Tasks and applications

The odorous components of the exhaust air from a clarification plant are to be scrubbed out using an exhaust air scrubber and oxidised using hydrogen peroxide. Here the hydrogen peroxide concentration is to be regulated to maintain 100 mg/l. As the exhaust air is acidic, the pH value is to be regulated to maintain 7.2. The measured values are to be recorded. The scrubbing water temperature can vary widely in the range 5 - 35 °C. Beta® 4b metering pumps are to be pulse frequency controlled.

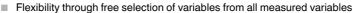
Components of the measuring/control station

Quantity		See page	Order no.
1	2-channel controller for pH and chlorine diaLog DACb with data logger	→ 2-3	DACa00613000010010EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-119	1005672
1	H ₂ O ₂ sensor PEROX-H2.10 P	→ 1-87	792976
1	PEROX transducer V2, measuring range switchable up to 20/200/2,000 mg/l	→ 1-87	1034100
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	Temperature sensor Pt 100 SE	→ 1-46	305063
1	Cable combination of control line 5 m SN6, open end (Pt 100, Pt 1000)	→ 1-120	1003208
1	Reference electrode REFP-SE	→ 1-46	1018458
1	DLG III A with PVC hose connection	→ 1-125	914955
1	Polishing paste (90 g tube)	→ 1-46	559810
1	Magnetic stirrer 100-240 V		790915
1	Magnetic stirring PTFE (magnetic stir bar) 15 x 6	_	790917
1	Photometer DT3B	→ 2-94	1039317

- Simple operation, controller with plain text operator guidance in 24 languages
- Recording of all measured data
- Simultaneous measurement and control of the pH value and the hydrogen peroxide concentration
- All products are selected to operate correctly with each other

2.2.1

Controller DULCOMETER® D1Cb/D1Cc


The water analysis workhorse

The controller DULCOMETER® D1Cb/D1Cc can be used for control tasks in potable water treatment, waste water treatment and many other areas. Safe, convenient and clear, thanks to the large illuminated graphic display, plain text operating menu and pH sensor monitoring.

The D1Cb/D1Cc controller is a 1-channel P/PID controller for the measured variables pH, ORP, chlorine, chlorine, chlorine, chlorite, ozone, bromine, peracetic acid, hydrogen peroxide, fluoride, dissolved oxygen and conductivity via mA. The sensors for pH and ORP can be directly connected via coaxial cable or using the 4-20 mA sensor input. The controller can bidirectionally control the measured variables, monitor limit values and transmit the measured value via an mA output, e.g. to a PLC Programmable Logic Controller. The mA output can optionally also be configured as an interference variable output. The controller has two pulse frequency outputs to control two metering pumps (raise and lower). Two output relays can optionally be used as limit value relays or to control motor-driven pumps or solenoid valves. An alarm relay signals the occurrence of a fault. A digital input is used to switch off the control or to process a sample water limit contact by remote control. The impact of temperature on the measurements can be provided by temperature measurement or by manual input. Menu-driven operation is possible in 20 languages.

Your benefits

- Safety through sensor monitoring of pH for glass breakage and line breakage
- Flexibly upgradable, thanks to subsequent activation option of functions by means of an activation code
- Various installation options: wall-mounted or installation in a control cabinet

Technical Details

- Measured variables: pH, ORP, chlorine, chlorine dioxide, chlorite, bromine, conductivity, peracetic acid, hydrogen peroxide, ozone, dissolved oxygen and fluoride
- Method of installation, degree of protection: D1Cb wall mounting IP 65, D1Cc control panel mounting IP 54, 1/4 DIN
- Measurement: 1 measuring channel, temperature compensation for pH
- Control: PID controller, bidirectional controller (e.g. with pH acid and alkali)
- Control inputs: 1 digital control input

Field of application

- Waste water neutralisation
- Measurement of the pH value and the disinfection parameters in potable water treatment and in the food and beverage industry
- Measurement and control of the hygiene parameters in swimming pools

pk_5_002 D1Cb (top), D1Cc (bottom)

Technical Data

Measuring range Type of connection mV:

pH 0.00 ... 14.00

ORP - 1,000 ... +1,000 mV Type of connection mA:

Chlorine: 0.00...0.500/2.00/5.00/10.0/20.0/50.0/100.0 ppm

Chlorine dioxide: 0.00...0.500/2.00/10.0/20.0 ppm

Chlorite: 0.02...0.50/0.1...2 ppm Bromine: 0.02...2.0/0.1...10.0 ppm

Ozone: 0.00...2.00 ppm

Hydrogen peroxide, PER1 sensor : 2.0...200.0/20...2,000 ppm

Peracetic acid: 1...20/10...200/100...2,000 mg/l Dissolved oxygen: 0.1...10/0.1...20 ppm

pH: 0.00...14.00 ORP: 0...+1,000 mV

Conductivity: 0...20/200/1,000 mS/cm, via mA converter

Temperature: 0...100 °C via mA converter

Resolution pH: 0.01 pH

. ORP: 1 mV

Amperometric (e. g. chlorine): 0.001/0.01 ppm, 0.01 vol.%

Accuracy0.5% of the upper measuring range valueMeasurement inputSN6 (input resistance > 0.5 x $10^{12} \Omega$)

Correction variable Temperature via Pt 100/Pt 1000

0 ... 100 °C Correction range temp. **Control characteristic** P/PID control Control 2-way control

1 x 0/4-20 mA galvanically isolated Signal current output

max. load 450 Ω

Adjustable range and allocation (measured variable, correction

variable, controlled variable)

Control outputs 2 pulse frequency outputs for metering pump actuation

2 relays (limit value or pulse length)

Alarm relay 250 V ~ 3 A, 700 VA changeover contact

90 - 253 V, 50/60 Hz, 15 VA **Electrical connection**

Ambient temperature -5 ... 50 °C

Enclosure rating Wall mounting: IP 65 Control panel version: IP 54

Wall mounting: 198 x 200 x 76 mm (WxHxD) **Dimensions**

Control panel version: 96 x 96 x 145 mm (WxHxD) (D1Cc)

Weight 0.8 kg

- Flexibly upgradable thanks to subsequent activation option for functions by means of activation code (see D1Ub/D1Uc upgrade identity code)
- Equipped for the most important basic requirements in water treatment
- Illuminated graphic display
- Operator guidance through clear text menu available in 20 languages in the controller
- Automatic buffer detection for pH calibration

D1Ub Identity Code Ordering System, Subsequent Function Upgrade for D1Cb see page → 2-23

A complete measurement station comes with:

- Measuring transducer/controller D1Cb/D1Cc (see Identity code)
- Fitting: DGMa..., DLG III ..., immersed fitting
- pH sensor (corresponding to Identity code)
- ORP sensor (corresponding to Identity code)
- Chlorine, chlorine dioxide, chlorite, bromine, dissolved oxygen sensor
- Transducer for pH or ORP (corresponding to Identity code)
- Sensor cable

Accessories for Controller DULCOMETER® D1Cb/D1Cc

	Order no.
Cable combination, coaxial, Ø 5 mm 0.8 m - SN6 - pre-assembled *	1024105
Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled *	1024106
Cable combination, coaxial, Ø 5 mm 5 m - SN6 - pre-assembled *	1024107
SN6 coaxial connector, retrofit, D1Cb, DACa	1036885
Protective RC circuit, retrofit kit for D1Cb	1034238
Spare parts kits D1Cc (frame, support brackets)	790130

^{*} For measured variable connection = 5

Measuring and Control Technology

2.2 Controller DULCOMETER® D1Cb/D1Cc

2.2.2

Identity Code Ordering System DULCOMETER® D1Cb, Wall Mounting

D1Cb	Install	ation													
	W	Wall n	nountin	g (IP 65	5)										
		Version	on												
		00		ProMinent logo											
				r supp											
			6		0253 V, 48/63 Hz (wide-range power supply)										
				Appro	pprovals										
				01	The state of the s										
					nara 0	rdware add-on I None									
							ware a	dd-on	II						
						0	None		==						
						1	RC pr	otectio	n for po	ower re	lays				
								nal co	nnecti	on					
							0	None							
								Softw U	are de			# ina /a	مطفاء	fallen	ring selection options are automatically set to
								U		are dei efault se		ung (a	ii Oi tiie	HOHOW	ing selection options are automatically set to
								٧				ne follo	wing se	election	options must be evaluated)
									Meas			e pres			
									0		•		pon co	mmiss	ioning)
									A		etic ac	id			
									B C	Bromi					
									D		ine dio	vide			
									F	Fluori		NIGO			
									Н			eroxide	(PER1)	
									I	Chlori	te		•		
									Р	pН					
									R	ORP					
									S				rd sign		eral
									T X		erature lved ox		A trans	ducer	
									Ž	Ozon		tygen			
									L			via mA	transo	ducer	
															ariable (presetting)
										1	mA te	rminal	can be	switch	ned to mV, all measured variables selectable
Langu			•							2					ndard signal 0/4-20mA, all measured variables selectable
00	no def									5					ned to mA, all measured variables can be selected
DE	Germa												variab	le	
EN ES	Englisl Spanis										0	None		D+ 10	0/1000 via terminal (for pH and conductivity)
SV	Swedi										4				e entry (for pH and conductivity)
PT	Portug										[rol inp		
CN	Chines											0	None		
FR	French											1	Pause	e contr	ol
CZ	Czech													al outp	
JP	Japan												0	None	
KR NO	Korear												1		alogue signal output 0/420 mA
NL NL	Norwe Dutch	yıarı													y control Alarm and 2 limit value relays or 2 timer relays
PL	Polish													M	Alarm and 2 solenoid valve relays or 2 timer relays
RU	Russia	ın													Pump control
TH	Thai														0 None
HU	Hunga	rian													2 2 pumps via pulse frequency
IT	Italian														Control characteristic
DK	Danish	1													0 None
FI	Finish														1 P-control 2 PID control
GR	Greek														2 PID CONTO

2.2.3 Identity Code Ordering System DULCOMETER® D1Cc, Control Panel Mounting

D1Cc	Type	of mour	nting														
	D		ol panel i	nstallat	ion (IP 5	54)											
		Design			,	,											
		00		roMine	nt logo												
		00															
				ting vo		/60 !!	(variet -	alta -: -									
			6			3/63 Hz	(wide v	oitage p	ower s	uppiy)							
					ication												
				01		proval											
						vare ex	tensio	n I									
					0	None											
						Hardv	vare ex	tensio	n II								
						0	None										
							Exter	nal con	nectio	n							
							0	None									
								Softw	are de	ault se	ttings						
								U			c settin	g (all of t	the follo	wing se	election	options	are automatically set to the basic
									setting								
								٧			•				tions m	ust be e	evaluated)
												default					
									0			oice upo	on comr	nission	ing)		
									Α		etic aci	d					
									В	Bromi							
									С	Chlori	ne						
									D	Chlori	ne diox	ide					
									F	Fluorid	de						
									Н	Hydro	gen pe	roxide (I	PER1)				
									I	Chlori	te						
									Р	pН							
									R	ORP							
									S	0/42	0 mA s	tandard	signal,	genera	ıl		
									Т	Temp	erature	via mA	transdu	cer			
									X	Dissol	ved ox	ygen					
									Z	Ozone)						
									L	Condu	ctivity	via mA t	ransdu	cer			
										Meas	ured va	ariable	connec	tion (d	lefault	setting)	
Langu	age									1							asured variables can be selected
00		ault setti	ing							5	mV te	rminal c	an be s	witched	d to mA	, all mea	sured variables can be selected
DE	Germa	เท	•								Corre	ection v	ariable				
EN	English	h									0	None					
ES	Spanis	sh									2	Tempe	erature	Pt 100/	1000 vi	a termin	al (for pH and conductivity)
SV	Swedi										4						nd conductivity)
PT	Portug												ol inpu		•		
CN	Chines											0	None				
FR	French											1		contro	I		
CZ	Czech													l outpu			
JP	Japan												0	None	-		
KR	Korear												1		log sian	al outpu	ıt 0/420 mA
NO	Norwe														r activ		·
NL	Dutch	J												G			imit value relays or 2 timer relays
PL	Polish													M			solenoid valve relays or 2 timer
														"	relays		
RU	Russia	เท												1		activa	tion
TH	Thai													1	0	None	
HU	Hunga	ırian												1	2	2 pum	ps via pulse frequency
IT	Italian													1			ol characteristic
DK	Danish	ı														0	None
FI	Finish													1		1	Proportional control
GR	Greek															2	PID control
2	I I I I																

If software default setting $\mathbf{U} = \text{software default setting is selected}$, the measured variables pH or ORP can be selected during commissioning. The menu language is automatically requested.

The connection of the measured variable is 5 = mV input for pH/ORP via shield clamp.

With all other options, the default settings (first option) are selected.

The controller with software with default settings can also be ordered with an order number.

Order no.

Controller in basic setting D1CbW00601000U01000G0000 1036423

Subsequent activation of functions is possible at any time using an activation key.

This activation key can only be used with the controller with the specified serial number. The activation code can be provided by phone, fax or e-mail and can be simply entered into the control keyboard. The new function is then available and need only be enabled and parametrised.

The following information is essential to obtain the activation code:

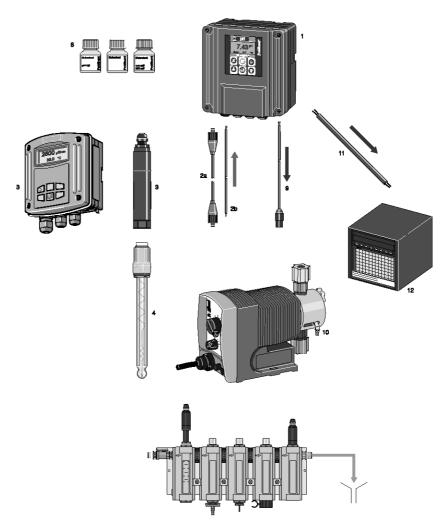
- Serial number of the controller (refer to nameplate or operator menu under "General Settings and Information")
- Current identity code of the controller (refer to operator menu under "General Settings and Information"
- Required identity code

2.2.4 D1Ub Identity Code Ordering System, Subsequent Function Upgrade for D1Cb

D1Ub	Softw	are defa	ults													
		Softwa	re pre-s	set												
		Defaul	lt - mea	sured v	variable											
		0	Univer	Universal (choice of measured variable upon commissioning)												
			Conne	onnection of measured variable												
			1		dard signal 0/4-20 mA, all measured variables and mV input for pH/ORP (standard)											
					etion variable											
				0	None											
				2		erature F	2t100/Pt	1000 vi	a termina	al (for pH and conductivity)						
				4						conductivity)						
				1				illiy (iOi	priana	conductivity)						
					0	ol input INone										
					1		control									
					'											
						_	l output	Ĭ.								
						None										
						1'		alogue signal output 0/4-20 mA								
								ower control								
							G	Alarm and 2 limit value relays or 2 timer relays								
							M			plenoid valve relays or 2 timer relays						
								-	contro							
								0	None							
								2		ps via pulse frequency						
									Contro	ol modes						
									0	None						
									1	P control						
									2	PID control						
										Language						
										00 no default						

2.2.5 D1Uc Identity Code Ordering System, Subsequent Function Upgrade for D1Cc

		Softwar	re prese	et											
					variable										
		0		,		e of measured variable upon commissioning)									
			Conne			neasured variable									
			1				mA, all	measur	ed varia	bles and	I mV input for pH/ORP (standard)				
						on variable									
				0	None										
				2							and conductivity)				
				4				put (for	pH and	conduct	vity)				
						ol input									
					0	None									
1 Pause control															
						Signa	l output l None								
						1		anno cio	inal outr	sut 0/4-2	0 mA				
						ļ ·		contro	signal output 0/4-20 mA						
							G		rm and 2 limit value relays or 2 timer relays						
							M				alve relays or 2 timer relays				
									control		are relaye of 2 times relaye				
								0	None						
								2		os via pu	lse frequency				
										ol mode	<u> </u>				
									0	None					
									1	Proport	tional control				
									2	PID cor	ntrol				
										Langua	age				
											no default setting				


2.2.6

D1Cb and D1Cc Application and Ordering Examples

The application examples contain typical combinations of components for measuring stations in applications in the areas of swimming pool, drinking water, waste water and the food industry.

Components of a complete measuring and control system

- Measuring and control device e.g. DACa
- 2a Measuring line e.g. coaxial cable for pH and ORP sensors, Pt 100/Pt 1000
- 2b Measuring line 2-core for amperometric sensors with mA signal and transducer
- 3 Transducer 4 ... 20 mA (for two wire system), DMTa or pH V1
- 4 Sensor, e.g. pH single-rod sensor
- 5 Fitting e.g. in-line probe housing type DGMA
- 6 Stopcock sample water line
- 7 Sampling tap
- 8 Buffer solutions (pH/ORP)
- 9 Signal cable (metering pump control)
- 10 Actuator e.g. Beta® metering pump

AP_MSR_0006_SW3

Examples for:

- 1 Treatment of swimming pool water and decorative wells/fountains
- 2 Potable water monitoring
- 3 Treatment and monitoring of waste water (pH neutralisation)
- 4 Applications in the food industry

2.2.7 Application Examples, Treatment of Swimming Pool Water

Private swimming pool with measurement and metering of acid and chlorine based on the ORP value

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the ORP value (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor).

Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW00601010VP5010M21EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Cable combination coaxial 2 m-SN6 Ø 5 mm, pre-assembled	→ 2-70	1024106
1	1 channel controller D1Cb, ORP	→ 2 - 18	D1CBW00601010VR5010M21EN
1	ORP sensor RHES-Pt-SE	→ 1-33	150703
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-119	1005672
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-126	DGMa 320T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Simple operation, controller with plain text operator guidance in 20 languages
- Automatically correct pH value and correct disinfectant concentration
- All products are selected to operate correctly with each other

Private swimming pool with measurement and metering of acid and bromine

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and bromine (BCDMH) is used as a disinfectant, that is dissolved and dosed via a bromine sluice. The disinfectant is to be regulated on the basis of a bromine measurement (a comparative calibration using a DPD 1 measuring unit should be carried out at regular intervals, likewise calibration of the pH sensor). The measured values are to be recorded. A DF2a peristaltic pump for pH correction and the solenoid valve of a bromine sluice are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW00601010VP5010M21EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-119	1005672
1	1 channel controller D1Cb, bromine	→ 2-18	D1CBW00601010VB1010M21EN
1	Bromine sensor BCR 1-mA-10 ppm	→ 1-70	1041698
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-121	725122
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-126	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Simple operation, controller with plain text, operator guidance in 20 languages, display of measured data
- Automatically correct pH value and correct disinfectant concentration
- All products are selected to operate correctly with each other

Private swimming pool with measurement of free chlorine and pH value

Tasks and applications

The pool water of a frequently-used private indoor swimming pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the chlorine concentration (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). Beta[®] 4b metering pumps are to be controlled.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW00601010VP5010M21EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-119	1005672
1	1 channel controller D1Cb, chlorine	→ 2-18	D1CBW00601010VC5010M21EN
1	Chlorine sensor CLE 3-mA 2 ppm	→ 1-51	792920
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-121	725122
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-126	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Simple operation, controller with plain text operator guidance
- Automatically correct pH value and direct measurement and control of chlorine concentration
- All products are matched

Oxidation of well water with hydrogen peroxide

Tasks and applications

The water of a decorative well or fountain is to be disinfected/oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60% the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, bromine	→ 2-18	D1CBW00601010VH1010M21EN
1	Hydrogen peroxide sensor PER 1-mA-50 ppm	→ 1-86	1030511
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-126	DGMa311T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Simple operation, controller with plain text operator guidance
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are matched

2.2.8

Application Examples, Potable Water Monitoring

Waterworks with control measurement of chlorine

Tasks and applications

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A magnetic flow meter with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, chlorine	→ 2 - 18	D1CBW00601010VD1010G21EN
1	Chlorine sensor CLE 3-mA-0.5 ppm	→ 1-51	792927
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Simple operation, controller with plain text operator guidance
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are matched

Legionella prevention in public buildings

Tasks and applications

The chlorine dioxide and the chlorite concentration are to be monitored and recorded in the fresh water distribution system of a public building for the prevention of Legionella. Chlorite is a disinfection by-product of chlorine dioxide that arises if germs have been killed. The chlorite concentration is limited using a limit value of 0.2 mg/l.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, chlorine dioxide	→ 2-18	D1CBW00601010VD1010M21EN
1	Chlorine dioxide sensor CDE 2-mA-0.5 ppm	→ 1-74	792930
1 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-121	725122
1	1 channel controller D1Cb, chlorite	→ 2-18	D1CBW00601010VI1010M21EN
1	Chlorite sensor CLT 1-mA-0.5 ppm	→ 1-78	1021596
1 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm 2 m (e.g.: flow sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa302T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Simple operation, controller with plain text operator guidance
- Upon exceeding of the chlorite limit value, a limit value relay switches the chlorine dioxide off or to a basic load.
- All products are matched

Oxidation of well water with hydrogen peroxide

Tasks and applications

The water drawn from a deep well is to be oxidised using hydrogen peroxide. The addition of hydrogen peroxide is to be measured. Metering is dependent on the measured value.

If with a control variable of 60% the setpoint is reached after 1 hour, then metering should enter the basic load settings and an alarm should be set (a calibration of the hydrogen peroxide sensor using a comparative measurement is required at regular intervals).

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, hydrogen peroxide	→ 2-18	D1CBW00601010VH1010G21EN
1	Hydrogen peroxide sensor PER 1-mA-50 ppm	→ 1-86	1030511
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Simple operation, controller with plain text operator guidance
- If the setpoint has not been reached within 1 hour, the dosing monitor signals via the alarm relay and sets control to an adjustable basic load
- All products are matched

Measuring and Control Technology

2.2 Controller DULCOMETER® D1Cb/D1Cc

2.2.9

Application Examples, Waste Water Monitoring

Neutralisation of the waste water of an industrial plant

Tasks and applications

In an industrial plant, waste water arises in an intermittent manner (batch production), and can be acidic or alkaline. The water is collected in a storage tank. There is a stirrer in the storage tank, a pH immersion fitting with wet holding cup, based on which the pH value is adjusted. The discharge connecting piece, which can be closed off using a shut-off valve with a limit switch, of a storage tank contains a pH sensor with a pH changeover device, which is used for the final check.

If a limit value transgression occurs, the shut-off valve closes automatically. Additionally, a neutral zone is defined in the controller. If the pH value comes within this neutral zone, no control takes place. There may be solids in the waste water.

Components of the pH measuring/control station in the collection tank

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW00601010VP5010M21EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-16	1001586
1	Cable combination coaxial 5 m-SN6, shield connection	→ 1-119	1024107
1	Temperature sensor Pt 100 SE	→ 1-46	305063
1	Cable combination of control line 5 m SN6, open end (Pt 100, Pt 1000)	→ 1-120	1003208
1	Immersion fitting with 3 sensor slots IPHa 3-PP	→ 1-129	1008602
1	Cable combination coaxial 5 m - SN6 - pre-assembled	→ 1-129	1008633

Components of the measuring/control station in the outlet

Quantity		See page	Order no.
1	1 channel controller D1Cb, pH	→ 2-18	D1CBW00601010VP5010M21EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-16	1001586
1	Cable combination coaxial 5 m-SN6, shield connection	→ 1-119	1024107
1	Retractable process assembly WA-PH 1	→ 1-134	1020631

Note: The use of other sensors is also possible depending on the quality of the waste water (see Selection Guide for pH Sensors DULCOTEST®→ 1-1)

With seriously contaminated waste water with solid matter content

Quantity	Name	See page	Order no.
1	pH sensor PHEX 112 SE	→ 1-17	305096

With clear waste water

Quantity	Name	See page	Order no.
1	pH sensor PHEP 112 SE	→ 1-13	150041

- The waste water pH value is within the specified limit values
- Simple operation, controller with plain text operator guidance in 20 languages
- pH limit value monitoring of drainage water
- All products are selected to operate correctly with each other

2.2.10

Application Examples in the Food Industry

Bottler disinfection in the beverage industry

Tasks and applications

Continuous disinfection of the filler with disinfection solution means this sensitive part of the bottling process is reliably sterilised. Continuous spraying with disinfectant solution means high hygiene requirements are fulfilled.

The disinfectant solution comprises water with additional chlorine dioxide. The concentration of the chlorine dioxide is measured and set to the desired value using the D1Cb controller.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, chlorine	→ 2-18	D1CBW00601010VD1010G21EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	→ 1-76	1033393
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1 - 121	725122

Benefits

- Hygienic trouble-free bottling
- Simple operation, controller with plain text operator guidance in 22 languages
- All products are matched

Irrigation water disinfection for useful plants

Tasks and applications

The irrigation water from e.g. salad seedlings is drawn from a well. The water could be contaminated with germs which could harm the salad seedlings. To prevent this, the irrigation water is disinfected using chlorine dioxide. The irrigation water requirement is always constant.

The irrigation water may contain suspended matter.

Components of the measuring/control station

Quantity		See page	Order no.
1	1 channel controller D1Cb, chlorine	→ 2-18	D1CBW00601010VD1010G21EN
1	Chlorine dioxide sensor CDR 1-mA-2 ppm	→ 1-76	1033393
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa301T000
5 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Irrigation water does not harm the seedlings
- Simple operation, controller with plain text operator guidance in 20 languages
- Switchover of control parameters via an external potential-free contact
- All products are selected to operate correctly with each other

Measuring and Control Technology

2.3 Controller DULCOMETER® Compact

2.3.1

Controller DULCOMETER® Compact

Compact yet fully equipped - the basic water analysis unit

As a controller in water analysis, the DULCOMETER® Compact is the correct controller for control tasks that require only a 1 way control.

The DULCOMETER® Compact controller is a one-channel PID controller for the measured variables pH, ORP, chlorine and inductive conductivity. It can monodirectionally control the measured variable, monitor limit values and transmit the measured value via an mA output, e.g. to a PLC. The mA output can optionally also be configured as a controlled variable output. The controller has one pulse frequency output to control one metering pump. One output relay can optionally be used as an alarm or limit value or to control motordriven metering pumps or solenoid valves. A digital input is used to switch off the control or to process a sample water limit contact by remote control. The impact of temperature on the measurements can be provided by temperature measurement or by manual input. Menu-driven operation is languageindependent.

Your benefits

- Flexibility in the choice of measured variable with pH and ORP
- Always the optimum measured value resolution by auto-ranging with conductivity measurement
- Depending on the requirement, various display options for conductivity, such as: Conductivity, TDS (Total Dissolved Solids), salinity and specific resistance
- Safety through sensor monitoring of pH for glass breakage and line breakage
- Various installation options: wall-mounted, installation on an upright or in a control cabinet

Technical Details

- Measured variables: pH, ORP, chlorine, conductive and inductive conductivity
- Method of installation, degree of protection: Combination housing (wall mounting, control panel mounting, pillar assembly) IP 67, control panel IP 54
- Measurement: 1 measuring channel, temperature compensation for conductivity and pH
- Control: PID controller, monodirectional controller (e.g. with pH acid or alkali)
- Control inputs: 1 digital control input

Field of application

- Measurement and control of water parameters in industrial and process water treatment plants
- Permeate monitoring in reverse osmosis systems
- Measurement and control of the hygiene parameters in swimming pools

Technical Data

Measuring range pH: 0.00 ... 14

ORP: -1000 ... +1000 mV

Chlorine: 0.05 ... 5 ppm, intermittent metering up to 10 ppm,

Conductive conductivity: 0.5 µS/cm ... 20 mS/cm (auto-ranging) Inductive conductivity with ICT 1: 200 µS/cm ... 1000 mS/cm (auto-ranging)

Inductive conductivity with ICT 2: 20 µS/cm ... 2000 mS/cm

(auto-ranging)

Resolution pH: 0.01 pH ORP: 1 mV

Chlorine: 0.01 ppm

Conductivity: 0.1 µS/cm (depends on the measuring range)

Accuracy 0.5% of the upper range value Temperature compensation 0 ... 120 °C, chlorine 1 ... 45 °C

range

Control Monodirectional PID control with selectable control direction

Sensor input for the relevant measured variable Inputs

Temperature sensor input: pH: Pt 1000, chlorine and conductivity:

Pt 100/ Pt 1000

1 digital input as a remote control input for the functions pause control /

sample water fault

P_DM_0025_SW1

2.3 Controller DULCOMETER® Compact

Outputs 1 pulse frequency output for the control of metering pumps

1 active 0/4...20 mA output configurable as a measured or control variable, max.

load: 400 Ω

1 output relay used as a changeover contact, can be configured as an alarm, limit value or pulse width-modulated control output for motor-driven metering pumps

Cell constant, conductive

conductivity

0.05 ... 12.0 cm⁻¹

Voltage supply $100-240 \text{ V} \pm 10\%, 50/60 \text{ Hz}, 5 \text{ W}$

Permissible operating

temperature

-10 ... +60 °C

Enclosure rating IP 67, based on NEMA4X **Dimensions** 135 x 125 x 75 mm (H x W x D)

Weight 0.5 kg

2.3.2 Identity Code Ordering System DULCOMETER® Compact, Wall Mounting IP 67

DCCa	Type o	of moun	ting											
	W	Wall/pipe mounting IP 67												
	S	With fit	ting kit f	ing kit for control panel mounting IP 54										
		Design												
		00	With P	ith ProMinent® logo										
			Opera	ting vol	g voltage									
			6			53 V, 48/63 Hz								
				Measu	ıred var	ed variable								
				C0	Free cl									
				PR	pH/OR	P (switch	chable)							
				L3	Condu	ctive co	nductivi	ty (unit c	designation: COND_C)					
				L6	Inducti	ve cond	luctivity	(unit des	signation: COND_I)					
					Hardw	Hardware extension								
	0 None													
						Certifi	cations							
						01	CE (St	andard)						
							Certifi	cates						
							0	None						
								Docun	nentation language					
								DE	german					
								EN	english					
								ES	spanish					
								IT	italian					
								FR	french					
								FI	finnish					
								BG	bulgarian					
								CN	chinese					
								CZ	czech					
								GR	greek					
								HU	hungarian					
								JP	japanese					
								KR	korean					
								LT	lithuanian					
								LV	latvian					
								NL	dutch					
								PL	polish					
								PT	portuguese					
								RO	romanian					
								RU	russian					
								SE	swedish					
								SK	slovakian					
								SI	slovenian					
								SV	Swedish					
								TH	thai					

Accessories

	Order no.
Cable combination, coaxial, Ø 5 mm 0.8 m - SN6 - pre-assembled *	1024105
Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre-assembled *	1024106
Cable combination, coaxial, Ø 5 mm 5 m - SN6 - pre-assembled *	1024107
Assembly set for installation in control cabinet	1037273
Chlorine sensor CLB 2-μA-5 ppm	1038902
Chlorine sensor CLB 3-µA-5 ppm	1041696

2.3 Controller DULCOMETER® Compact

2.3.3 Application and Ordering Examples for the DULCOMETER® Compact

The application examples contain typical combinations of components for measuring stations in applications in the areas of swimming pool, drinking water and waste water.

Components of a complete measuring and control system

- 1 Treatment of swimming pool water and decorative wells/fountains
- 2 Potable water monitoring
- 3 Treatment and monitoring of waste water (pH neutralisation)

2.3 Controller DULCOMETER® Compact

2.3.4

Application Examples, Treatment of Swimming Pool Water

Private swimming pool with measurement and metering of acid and chlorine based on the ORP value

Tasks and applications

The pool water of a private outdoor swimming pool, used for only a short time every year, is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the ORP value (a comparative check with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor).

Type DF2a peristaltic pumps are to be controlled. The sample water flow is to be monitored and upon failure, the controller should stop.

Components of the measuring/control station

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-31	DCCaW006PR0010EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Cable combination coaxial 2 m-SN6 Ø 5 mm, pre-assembled	→ 2-70	1024106
1	Compact controller for ORP	→ 2-31	DCCaW006PR0010EN
1	ORP sensor RHES-Pt-SE	→ 1-33	150703
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-119	1005672
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-126	DGMa 320T000
4 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Operation is simple and independent of the operating language
- Automatically correct pH value and correct concentration of disinfectant
- All products are matched

Private swimming pool with measurement of free chlorine and pH value

Tasks and applications

The pool water of a frequently-used private indoor swimming pool is to be treated. Sulphuric acid is used to correct the pH and sodium-calcium hypochlorite is used as a disinfectant. The disinfectant is to be regulated on the basis of the chlorine concentration (a comparative calibration with a DPD 1 measurement should be carried out at regular intervals, likewise calibration of the pH sensor). Beta[®] 4b metering pumps are to be controlled.

Components of the measuring/control station

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-31	DCCaW006PR0010EN
1	pH sensor PHES 112 SE	→ 1-11	150702
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-119	1005672
1	Compact controller for chlorine	→ 2-31	DCCaW006C00010EN
1	CLB 2-µA-5 ppm	→ 1 - 59	1038902
1	In-line probe housing DGMa with sample water scale and limit switch	→ 1-126	DGMa 320T000
4 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

- Operation is simple and independent of the operating language
- Automatically correct pH value and direct measurement and control of chlorine concentration
- All products are matched

2.3 Controller DULCOMETER® Compact

2.3.5

Application Examples, Potable Water Monitoring

Waterworks with control measurement of chlorine and pH

Tasks and applications

The chlorine concentration in the outlet of a water works is to be monitored. Metering is performed with the volume proportional to the water flow. A magnetically induced flow meter with a 4-20 mA output signal directly controls a metering pump.

If the setpoint is not reached for at least 5 minutes, then a limit value relay should switch and signal via a signal generator that the stroke length of the metering pump must be increased. Conversely, monitoring should also be performed to determine if too much chlorine has been dosed (calibration of the chlorine sensor should be performed at regular intervals by means of a DPD 1 comparative measurement).

Components of the chlorine measuring/control station

Quantity		See page	Order no.
1	Compact controller for chlorine	→ 2-31	DCCaW006C00010EN
1	CLB 2-µA-5 ppm	→ 1 - 59	1038902
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa 310T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Components of the pH measuring/control station

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-31	DCCaW006PR0010EN
1	DULCOTEST® pH-Sensor PHEP-112-SE	→ 1-13	150041
1	Sensor connection cable, coaxial 2 m, SN 6 pre-assembled	→ 1-119	1005672
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa 310T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Operation is simple and independent of the operating language
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are matched

Waterworks with control measurement of conductivity

Tasks and applications

The conductive conductivity in the outlet of a water works is to be monitored. The measured value is to be transmitted to a PLC via a 4-20 mA analogue signal.

Components of the measuring/control station

Quantity		See page	Order no.
1	Compact controller for conductive conductivity	→ 2-31	DCCaW006L30010EN
1	Conductivity sensor measuring range 20 mS/cm, type LFTK 1	→ 1-101	1002822
1	Screened sensor cable LF, 5 m	→ 1-120	1046026
1	DGMa in-line probe housing with sample water limit contact	→ 1-126	DGMa 310T000
2 m	Control line LiYY 2 x 0.25 mm ² Ø 4 mm (e.g. sensor)	→ 1-121	725122

Benefits

- Operation is simple and independent of the operating language
- Signalling via a limit value relay if the setpoint has been reached after 5 minutes.
- All products are matched

2.3 Controller DULCOMETER® Compact

2.3.6

Application Examples, Waste Water Monitoring

Neutralisation of the waste water of an industrial plant

Tasks and applications

In an industrial plant, waste water arises in an intermittent manner (batch production), the water is always acidic (or always alkaline). The water is collected in a storage tank. There is a stirrer in the storage tank, a pH immersion fitting with wet holding cup, based on which the pH value is adjusted. The storage tank discharge connecting piece contains a pH sensor with a pH changeover device, which is used for the final check.

The control is one-way, i.e. acidic or alkaline. There may be solids in the waste water. The measured values are transferred via the 4-20 mA analogue signal.

Components of the pH measuring/control station in the collection tank

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-31	DCCaW006PR0010EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-16	1001586
1	Cable combination coaxial 5 m-SN6, shield connection	→ 1-119	1024107
1	Pt 1000 Temperature sensor	→ 1-46	1002856
1	Cable combination of control line 5 m SN6, open end (Pt 100, Pt 1000)	→ 1-120	1003208
1	Immersion fitting with 3 sensor slots IPHa 3-PP	→ 1-129	1008602

Components of the measuring/control station in the outlet

Quantity		See page	Order no.
1	Compact controller for pH	→ 2-31	DCCaW006PR0010EN
1	DULCOTEST® pH sensor PHER 112 SE	→ 1-16	1001586
1	Cable combination coaxial 5 m-SN6, shield connection	→ 1-119	1024107
1	Retractable process assembly WA-PH 1	→ 1-134	1020631

Note: The use of other sensors is also possible depending on the quality of the waste water (see Selection Guide for pH Sensors DULCOTEST $^{\otimes}$ \rightarrow 1-1)

For seriously contaminated waste water with solid matter content

Quantity	Name	See page	Order no.
1	pH sensor PHEX 112 SE	→ 1-17	305096

For clear waste water

Quantity	Name	See page	Order no.
1	pH sensor PHEP 112 SE	→ 1-13	150041

Benefits

- Operation is simple and independent of the operating language
- pH limit value monitoring for the waste water
- All products are matched

Measuring and Control Technology

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

2.4.1

Controller DULCOMARIN® II

Transparency in water analysis in the Dialog controller for up to 16 x 10 measuring points.

Controller DULCOMARIN® II for water analysis: Green technology with energy and chemical saving function. Control of circulating pumps and filter backwash is possible.

The DULCOMARIN® II measuring and control system manages your entire swimming pool and your hot tub: from water treatment to filter control, pool cover, attractions, water heating, solar control, pool and external lighting. System information and messages are clearly and graphically visualised on the coloured display. At the same time, the information can also be transmitted via the internet to a tablet PC or smartphone. Coupling to a building bus is simply possible via KNX, PROFIBUS®-DP, Modbus RTU or OPC. Based on the modern bus technology DULCO®-NET, the system is capable of growing to meet requirements and can be extended at any time. It can be used in high-end private pools, school swimming pools, hotel swimming pools or in public themed baths. Depending on requirements, a potable water treatment system or legionella prevention system can also be integrated. The integrated SoftPLC enables almost all customer requirements to be met. The DISINFECTION Controller design can be used for general water treatment tasks.

Your benefits

- Visualisation made simple: with the embedded web server and a standard web browser
- Simple connection to your PC or PC network or the internet via a LAN interface
- Operation via Apple® iPod, iPad (WLAN access point necessary)
- Control of up to 16 sub-systems, each with 10 measuring parameters, in potable water systems or filter circuits in swimming pools or with general water treatment tasks
- Customer-specific adjustments are possible: A SoftPLC conforming to IEC 61131 also enables customer-specific process control to be integrated in addition to integral processing.
- View current and historical measured data directly on the controller: the integral data logger with screen plotter permits this
- Simply transmit measured data to a PC as standard: SD card and card reader for PC always included
- Simple wiring and subsequent expandability thanks to DULCO®NET bus system
- Intelligent sensors: save sensor data and always be in the optimum measuring range with auto-ranging
- Intelligent metering pumps: find information on operating parameters, such as: Chemical level status and pump capacity in the metering range of 0.74 l/h to 1,030 l/h
- Coupling to a PLC via a PROFIBUS®-DP and Modbus RTU

Technical Details

- Measured variables: pH, ORP, free chlorine, total chlorine, combined chlorine, bromine, chlorine dioxide, chlorite anion and temperature
- Accuracy: 0.5% of the upper range value
- Control characteristic: P/PI/PID control
- Digital inputs: 5 potential-free inputs
- Signal current output: 4 x 0/4-20 mA
- Interfaces: LAN, SD expansion slot

Field of application

- Measurement and control of the hygiene parameters in swimming pools
- Monitoring of the water parameters in potable waterworks
- Monitoring of the chlorine dioxide concentration in systems for legionella control and prevention, for example in schools, hotels or hospitals

The applications are defined in the identity code

Every potable water system or every filtration circuit has a proprietary on-site calibration option for all measured variables.

What is the Eco! Mode operating mode?

Eco!Mode permits lowering of the circulation capacity when the DIN hygiene parameters pH, ORP, free chlorine and combined chlorine are within the permitted limits.

A circulating pump with frequency converter with analogue input is needed for this.

The reduction can be activated via a remote control, dependent on the DIN hygiene parameters being observed, the time and appropriate activation. A combination of criteria is also possible. If the DIN hygiene parameters are no longer adhered to, then the circulation capacity is again raised to the nominal power.

Lowering pump capacity saves energy and, in so doing, reduces CO₂ emissions.

In addition, upon reaching an adjustable ORP potential, e.g. 780 mV, which signals effective disinfection of the water, chlorine metering is reduced either gradually or in one step. If the DIN hygiene parameters are no longer adhered to, then chlorine metering is again increased to the normal setpoint.

What is a web server?

A web server is a software application executed by the DULCOMARIN® II.

The web server delivers web pages with information about measurements, control, sensor calibration and control configuration to a PC with a web browser (e.g. Microsoft® Internet Explorer).

The web server enables simple and straightforward visualisation of the DULCOMARIN® II, without special visualisation software being required on the PC. The web server is independent of the PC's operating system.

The DULCOMARIN® II is connected to a PC via a LAN/Ethernet interface. The connection can be made directly, via a network or via the internet. The cables needed for direct connection to a PC or network connection are included in the option.

Standard commercially available network components can be used as accessories for cables, routers and WLAN access points etc.

The same information can be accessed via the web server as is available on the DULCOMARIN® II itself, for instance changing setpoints for all control variables, switching off the different controllers and entering names for the pools/systems. The exceptions are the control settings and bus configuration that can only be entered directly on the controller.

What is OPC?

OPC stands for Openness, Productivity, Collaboration (formerly OLE for Process Control) and is used to describe a uniform software interface independent of specific manufacturers. OPC Data Access (OPC DA) is based on Windows COM (Component Object Model) and DCOM (Distributed Component Object Model) technology. OPC XML, in contrast, is based on the internet standards XML, SOAP and HTTP.

OPC is used wherever sensors, controllers and controls supplied by different manufacturers are used to create a common, flexible network. Without OPC, two devices would require precise knowledge about the communication options of the other device to be able to exchange data and extensions and exchanges would be correspondingly difficult. With OPC it is sufficient to write an OPC-compliant driver precisely once for each device and ideally this is provided by the manufacturer. An OPC driver can be integrated without extensive adaptation into any large control and monitoring systems.

ProMinent supplies an OPC server/driver, such as this, for the multi-channel measuring and control system DULCOMARIN® II.

The examples shown in the following are suitable for applications in potable water treatment and in swimming pool technology.

Technical Data

Measuring range pH -1...15

ORP: -1,200 ... +1,200 mV

Chlorine, free 0.01...10 ppm/100 ppm Chlorine, total 0.01...10 ppm Chlorine, combined 0.01... 2.00 ppm Promine: 0.01...10 ppm

Bromine: 0.01...10 ppm Chlorine dioxide: 0.01...10 ppm Chlorite anion: 0.10...2 ppm

Temperature -20 ... 150 °C

Pt 100 or Pt 1000

Resolution 0.01 pH / 1 mV / 0.01 ppm / 0.1 $^{\circ}$ C

Accuracy 0.5% of the final value of the measuring range (at 25 °C)

Measurement input pH and ORP via terminal mV
Chlorine via CANopen bus

P/PI/PID control intelligent control

Control characteristic P/PI/PID control, intelligent control

ControlAcid and/or alkali and chlorine (2 control circuits), temperatureDigital inputs5 potential-free inputs (sample water, pause, 3 pump failures, 2nd

parameter set)

Signal current output $4 \times 0/4$ -20 mA max. load 600 Ω range adjustable.

Important: An isolating amplifier, e.g. part no. 1033536, is required for connecting to devices that are not electrically

isolated.

ProMinent®

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

Control outputs 3 reed contacts for acid, alkali or flocculants and chlorine (pulse

frequency to control metering pumps)

3 relays (pulse length) contact type changeover to control solenoid

valves or peristaltic pumps

Alarm relay 250 V ~3 A, 700 VA contact type, changeover

Interfaces LAN, SD-expansion slot **Electrical connection** 100...240 V~, 50/60 Hz

Permissible ambient -5...45 °C

temperature

Storage temperature -10...70 °C **Enclosure rating** IP 65


Climate Permissible relative humidity: 95% non-condensing

DIN IEC 60068-2-30

Dimensions H x W x D 227 x 342 x 78 mm

Compliance of all devices with CANopen specifications:

On the hardware side, all devices comply with the harmonised CAN specification 2.0 (ISO99-1, ISO99-2). This includes the CAN protocol (ISO 11898-1) and details on the physical layer in compliance with ISO 11898-2 (high speed CAN up to 1 Mbit/sec) and ISO 11898-3 (low speed CAN up to 125 kBit/sec). The unit complies with the CAN-Open specification CIA-DS401 that forms the basis of the European standard EN50325-4 and also complies with the controller device profile CiA-404.

2.4.2 Controller DULCOMARIN® II

The DULCOMARIN® II multi-channel measuring and control system is suitable for 1 to 16 filtration circuits or potable water systems. The following bus modules are available for the control:

M module (measurement and control):

- Measurement and control of the pH value
- Measurement and display (optional control) of the ORP
- Measurement and display of the temperature of the sample water
- Sample water monitoring
- Measurement of free chlorine
- Measurement of combined chlorine (optional, calculated from total chlorine and free chlorine)

Chlorine sensors:

- Measurement of free chlorine and temperature
- Measurement of total available chlorine and temperature
- Measurement of combined chlorine as differential chlorine measurement

A module (control of metering pumps, analogue outputs):

- 3 frequency outputs to control metering pumps for pH correction, disinfection and flocculant metering
- 3 contact inputs to process pump alarm relays or tank fill level monitoring
- 4 freely programmable analogue outputs 0/4...20 mA for pH, ORP, free chlorine, combined chlorine or temperature

P module (controlling of peristaltic pumps, power supply of bus modules):

- Power relay pulse length control for pH value (e.g. control of the peristaltic pump)
- Power relay pulse length control of disinfectant (e.g. control of the chlorine electrolysis plant)
- Power relay limit value output to minimise combined chlorine
- Alarm relay
- Power supply of bus modules

N module (power supply of bus modules):

Power supply of bus modules with no further function

R module (control of the chlorine gas metering units):

 Control of a chlorine gas metering unit and processing of a position feedback potentiometer (0...10 kΩ) (only possible as external module)

Metering pumps with CANopen interface of type Beta®, delta®, Sigma/ 1, Sigma/ 2, and Sigma/ 3

- Direct connection to the bus
- When using Beta/4aCANopen metering pumps, the A module is not required (provided no current outputs are required).

I module (current input module)

- 2 active/passive current inputs (e.g. for the connection of 2-wire transmitters)
- 1 passive current input (e.g. for the connection of a magnetic-inductive flow meter)
- 2 digital inputs for sample water alarm and pause control
- 1 channel with controller function

ProMinent®

Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

F module (functional module)

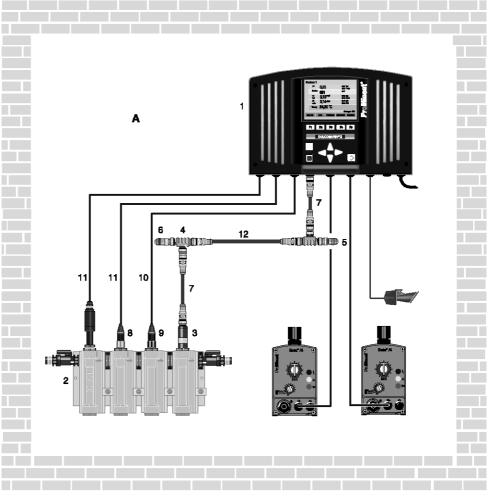
The F module consolidates functions and also extends these functions

The following functions can be provided by the F module (you can find details on this in the individual application examples in the assembly and operating instructions):

- Control of circulation operation (depending on the weekday and the time of day)
- Automatic backwashing (depending on the weekday and the time of day)
- Discharge of first filtrate
- Lowering of the water level during idle operation
- Circulation flow control (Flow Control)
- IO module for SoftPLC
- Water level control
- Sample water valve
- Heating function
- Gutter cleaning function
- Attractions
 - Flow control
- Control variables

PROFIBUS®-DP V1 gateway **Modbus RTU gateway**

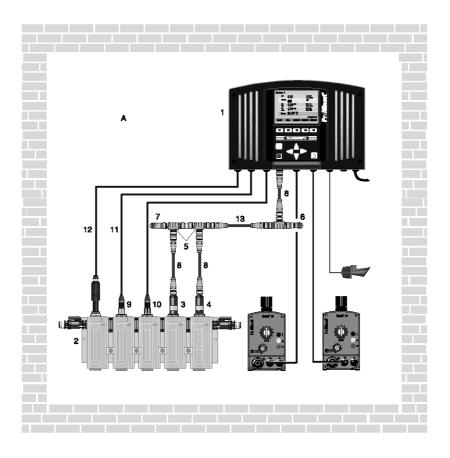
KNX gateway


SMS, email alarm signalling via mobile phone GPRS/EDGE - LAN router with web server visualisation

Configuration example: 1-pool system

The specific example of a measuring and control system for pH, ORP, free chlorine and temperature for a filter circuit consists of the following components (without metering technology):

A Engineering room


pk_5_020

Item	Quantity	Name	Order no.
1	1	DULCOMARIN® II central unit with measuring and control modules DXCa W 0 0 1 M A P S EN 01	-
2	1	DULCOTEST® in-line probe housing DGMa 3 2 1 T 0 0 0	-
3	1	Chlorine sensor CLE 3-CAN-10 ppm	1023425
4	3	T-distributor M12 5 pol. CAN	Included in delivery
5	1	Temination resistance M12 connector	Included in delivery
6	1	Temination resistance M12 plug	Included in delivery
7	3	Connection cable - CAN M12 5 way 0.5 m	Included in delivery
8	1	pH sensor PHES 112 SE	150702
9	1	ORP sensor RHES-Pt-SE	150703
10	2	Cable combination coaxial Ø 5 mm 2 m - SN6 - pre- assembled	1024106
11	2 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
12	_	Connecting cable - CAN, sold by the metre	1022160

Example 2

The specific example of a measuring and control system for pH, ORP, free and combined chlorine and temperature for a filter circuit consists of the following components (without metering technology):

A Engineering room

pk_5_020_1

Item	Quantity	Name	Order no.
1	1	DULCOMARIN® II central unit with measurement and actuation modules DXCa W 0 0 1 M A P S EN 01	-
2	1	DULCOTEST® in-line probe housing DGMa $322T000$	-
3	1	Chlorine sensor CTE 1-CAN-10 ppm	1023427
4	1	Chlorine sensor CLE 3.1-CAN-10 ppm	1023426
5	3	T-distributors M12 5 pole CAN	Included in delivery
6	1	Load resistor M12-coupler	Included in delivery
7	1	Load resistor M12-plug	Included in delivery
8	3	Connecting cable - CAN M12 5 pole 0.5 m	Included in delivery
9	1	pH sensor PHES 112 SE	150702
10	1	ORP sensor RHES-Pt-SE	150703
11	2	Cable combination coaxial Ø 5 mm 2 m - SN6 - pre- assembled	1024106
12	2 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
13	1	CAN Connection cable	As required

2.4.3

Identity Code Ordering System DULCOMARIN® II

DULCOMARIN®II DXC serie

DXCa Ir	nstall	ation											
V			ounting	(IP 65)									
S	3	Contro	l cabine	t (IP 54)									
		Versio	n										
		0	With operating elements										
		D	with op	perating	element	ts, for us	se in pot	able wat	er/disint	nfection applications			
			Comm	nunicati	on inter	rfaces							
			0	None									
			5	Embed	ded we	b serve	r, LAN in	cluding	5 m LAI	AN patch cable 1:1, LAN coupling, 5 m crossover cable 1)			
			6	OPC se	erver + e	embedd	ed web	server, l	_AN incl	cluding 5 m LAN patch cable 1:1, LAN coupling, 5 m crossover cable 1)			
						orrespo	nding o	ommur	nication	ons modules are required, see accessories)			
				0		None							
				1	Videographic recorder with data logger including SD card and USB card reader for PC								
				2						otion 5 or 6 needed)			
				3			•		•	5 or 6 needed)			
				4		•	•			munication option 5 or 6 needed)			
5 SoftPLC function + KNX function + alarm signalling via text, e-mail (communication option 5 or 6 needed SoftPLC function + alarm signalling via text, e-mail (communication option 5 or 6 needed) 7 SoftPLC function + KNX function (communication option 5 or 6 needed)													
							, ,						
					8 KNX function + alarm signalling via text, e-mail (communication option 5 or 6 needed)								
				0	Module 1								
M M module, measuring module for pH, ORP, temperature A M module, control module: 3 pump and 4 analogue outputs							a for nH ORP temperature						
							· · · · · ·						
					I module, current input module, 3 mA, 2 digital inputs								
						Modul				-,, 			
						0	Not us	ed					
						Α	A mod	ule, cont	rol mod	dule: 3 pump and 4 analogue outputs			
						М	M mod	ule, mea	asuring i	g module pH, ORP, temperature			
						I	I modu	le, curre	nt input	ut module, 3 mA, 2 digital inputs			
						F	F modu	ule, mod	lule for f	filter and attraction control			
							Modul						
							Р			ains power module, 1 alarm relay, 3 solenoid valve relays			
							N			ains power module without relay			
							1			supies module position 3			
								Applic		aria a a a al			
								S D		ming pool ble water/disinfection			
								D					
									00	uage default no operation			
									DE	German			
									EN	English			
									ES	Spanish			
									FR	French			
									IT	Italian			
									PL	Polish			
									NL	Dutch			
									CZ	Czech			
										Approvals			
										01 CE mark			

The identity code describes the **DULCOMARIN® II** controller.

¹ The supplied cable is for connection to a hub, switch, router or an intranet.

For direct connection of the DULCOMARIN® II to a PC/MAC, the supplied LAN coupling and category 5 cross-over cable are required.

The maximum LAN cable length is approximately 100 m.

To operate the web server on a PC we recommend ${\sf Microsoft}^{\it @}$ Internet Explorer 5 or higher as the browser.

The scope of supply of the DXCa includes:

- 1 T-coupler, 1 CAN connection cable
- 1 terminating resistance coupling and
- 1 terminating resistance plug,
- 1 SD card, 1 card reader suitable for PCs.

Important note when ordering multi-channel measuring and control systems for potable water and pool water applications:

Potable water applications: In the identity code, a "D" for "Potable water/disinfection" must be selected under "Version" and "Application". The description "System" will appear in the controller menu for the different potable water lines.

Swimming pool water applications: In the identity code, a "0" for "with operating elements" must be selected under "Version" and then an "S" for "Swimming pool" under "Application". The description "Tank" will appear in the controller menu for the different filter circuits.

All adjustment options and the use of the different modules are identical with both applications.

2.4.4 Multi-Channel Multi-Parameter Measuring and Control System

DULCOMARIN® II

The multi-channel multi-parameter measuring and control system DULCOMARIN® II DULCO® Net can, in

its top-of-the-range optional version, control 16 potable water systems/filtration circuits, i.e. the necessary external modules for 16 tanks can be connected to and operated by the central unit. The following options are available

Measurement and control of:

Up to 16 times:

- pH value
- ORP potential
- Free chlorine
- Combined chlorine (calculated)
- Temperature of the sample water

Also in potable water applications (using the I module):

- Flow (as disturbance variable for pH and chlorine control)
- UV intensity
- Conductivity
- Chlorine dioxide
- Chlorite
- Ammonia
- Fluoride
- Pt100/Pt1000 resistance thermometer via a transducer

Other inputs and outputs:

Up to 16 times:

- 3 frequency outputs for control of metering pumps for pH-correction, disinfectant and flocculent metering
- 3 contact inputs for processing of pump fault signal relays or container level monitoring
- 4 freely programmable analogue outputs 0/4 ... 20 mA (for pH, ORP, free chlorine, combined chlorine or temperature)
- 3 output relays pulse length control of the pH value, the disinfectant and minimisation of the combined chlorine (e.g. control of a peristaltic pump and chlorine electrolysis system and UV system)
- Control of a chlorine gas metering device
- 3 Beta®/4 CANopen metering pumps
- Up to 2 F modules per filter circuit are possible

The CAN bus with CANopen protocol is used as a data transfer medium between the various bus modules. This extremely interference-proof technology was developed by Bosch and is well known from its use in automotive applications. The maximum length of the bus backbone is 400 metres.

A T-coupler is used for connection of one of each bus module (M module, A module, P module, N module, Beta® 4 CANopen metering pumps and CAN chlorine sensors), which connects the devices to the bus backbone via a branching cable.

T-coupler and branching cable are part of the scope of supply of the modules.

All bus modules are supplied via the CAN bus with 24 V operating voltage (with the exception of Beta®/4 CANopen metering pumps, P modules, N modules. These require a separate mains voltage supply).

For this reason, depending on the size of the installation (number of filtration circuits to be controlled), additional P or N modules are required that feed the operating voltage for the bus modules into the bus. The central unit always contains a power supply (N or P module).

How many additional N or P modules do you require?

Number of filtration circuits	Additional N or P modules	Number of filtration circuits	Additional N or P modules
1	_	9	4
2	-	10	5
3	1	11	5
4	2	12	6
5	2	13	6
6	3	14	7
7	3	15	7
8	4	16	8

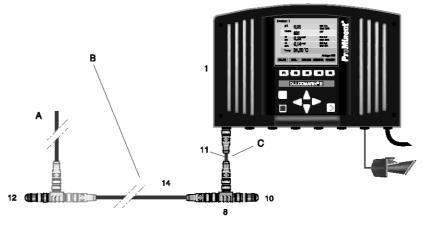
The DULCOMARIN® II can be easily extended by the connection of bus modules.

Which components can a DULCOMARIN® II system comprise?

A DULCOMARIN® II DULCO® Net system comprises:

DXCa central unit with operating elements

and a customised combination of the following components:


- M module, DXMaM (measuring and control)
- A module, DXMaA (control of metering pumps, analogue outputs)
- P module (module in the DXCa housing for power supply to the modules and alarm relays, output relays for control of, for example, peristaltic pumps)
- N module, DXMaN (power supply to external modules with no other function)
- R module, DXMaR (control of chlorine gas metering devices with response signal processing)
- I module (processing of sensor signals via 0/4...20 mA)
- F module (filter and attraction control)

The maximum bus backbone length is approximately 400 m!

2.4.5 Central Unit

- A Stub cable
- B Main BUS cable
- C Stub cable

pk_5_041_2

The central unit can be installed anywhere, for example in the control room. It serves as an I/O unit (view measuring data, parameterise and configure individual modules). It includes the following functions: standard screen recorder/data logger function, interfaces*, embedded Web server* and power supply. As an option, the central unit can also include an M and an A module if the central unit is also located in the control room. The central unit is connected to other units via the main bus train.

For this connection, the T-distributor and the CAN connecting cable 0.5 m included in the scope of delivery are used.

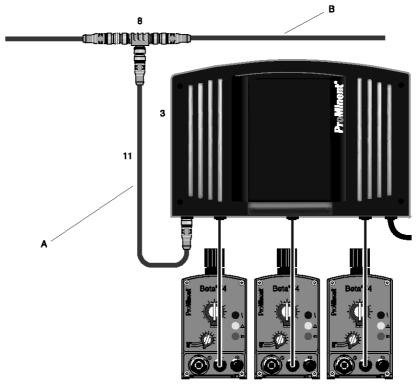
The main bus train must be fitted with termination resistors at either end.

These components are included in the scope of delivery.

The central unit in the above example consists of the following components:

Item	Quantity	Name	Order no.
1	1	DULCOMARIN® II central unit DXCa W 0 0 1 0 0 P S EN 01	-
8	1	T-distributor M12 5 pol. CAN	Included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	Included in delivery
14	1	CAN Connection cable	As required
10	1	Temination resistance M12 connector	Included in delivery
12	1	Temination resistance M12 plug	Included in delivery

^{*} optional


Measuring and Control Technology

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

2.4.6 Combination Module

A Stub cable

B Main BUS cable

pk_5_044

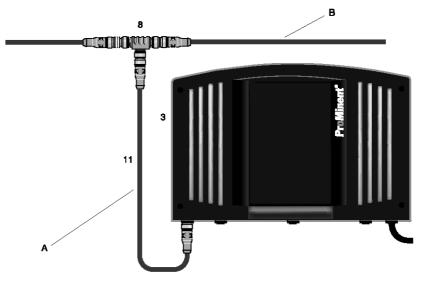
Combination of M, A, I-module and F, P, N module

Up to three different modules can be accommodated by the combination module (DXCa without control elements). The function of the combination module results from the function of the individual modules (see above description). The modules in the combination module are operated via the DXCa central unit.

The module is connected to other bus modules via the main bus line.

See the table below for the various equipment options.

Module position 1	Module position 2	Module position 3
M, A, I module	M, A, I module	P, N module
M, A, I module	F module	Occupied by the F module


The combination in the above example consists of the following components (without chemical fluid handling):

Item	Quantity	Name	Order no.
3	1	Control module DXCa W 2 0 0 0 A P S 00 01	-
8	1	T-distributor M12 5 pol. CAN	Included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	Included in delivery

2.4.7

Functional Module (F Module)

- A Stub line
- B Bus main string

P DC 0009 SW

The F module combines functions that were until now available in the A and P module combination and also extends these functions. It includes the supply voltage (90 – 253 VAC) for the controller. The F module is selected for the 2nd module position and also occupies the 3rd module position. The following functions can be provided by the F module (you can find details for this in the individual application examples in the assembly and operating instructions). The F module also acts as an input/output module for the SoftPLC.

Hydraulic functions:

- Control of circulation operation (depending on the weekday and the time of day)
- Automatic backwashing
- Route first filtrate through the internal circuit (electrical backflow shut-off valve)
- Lowering of the water level during idle operation
- Circulation flow control
- Water level control
- Sample water valve
- Heating function
 - Heating control heat exchanger
 - Solar heating
- Gutter cleaning function

Attractions:

- Open/Close cover
- Counterflow system/JetStream
- Flood/Neck shower
- Massage nozzle
- Underwater light

Monitoring:

- Flow control
 - Current circulation flow recording
 - Fresh water top-up recording
 - Cover
 - Massage pump active
 - 1, 2 or 4-stage level functions
- Control variables for:
 - Disinfection
 - pH (+/-)
 - Flocculation
 - UV system
 - Backwashing emergency-off, if water alarm emitted

2.4.8

Identity Code Ordering System Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II (Central Unit and Combination Module)

DXCa	Install	llation									
	W	Wall m	ounting								
	s	Control	l cabinet (IP 54)								
		Versio	n								
		0			elemen						
		2	Withou	ıt operat	ing elen	nents					
		D	With or	perating	elemen	ts, for us	se in pot	able wa	ter/disin	fection a	applications
			Comm	unicati	on inter	faces					
			0	None							
			5					•		•	cable 1:1, LAN coupling, 5 m crossover cable
			6							•	m LAN patch cable 1:1, LAN coupling, 5 m crossover cable
						orrespo	nding o	ommu	nication	s modu	ıles are required, see accessories)
				0	none						00 1 11100 1 1 6 00
				1							ng SD card and USB card reader for PC
				2							6 needed)
				4			•		option 5		on option 5 or 6 needed)
				5							alling via text, e-mail (communication option 5 or 6 needed)
				6						_	mail (communication option 5 or 6 needed)
				7				-	_		,
				8		PLC function + KNX function (communication option 5 or 6 needed) (function + alarm signalling via text, e-mail (communication option 5 or 6 needed)					
						odule 1					
					0	Not use	ed				
					М	M mod	ule, mea	asuring	module:	pH, OR	P, temperature
					Α	A mod	ule, cont	trol mod	ule: 3 pu	ımp and	I 4 analogue outputs
					1	I modu	le, curre	nt input	module	, 3 mA ir	nputs, 2 digital inputs
						Modul					
						0	Not use				
						A					ump and 4 analogue outputs
						M			•		pH, ORP, temperature
						F					, 3 mA inputs, 2 digital inputs attraction control
						Г	Modul	,	iule ioi ii	iller and	attraction control
							P		ıle mair	ns nowe	r module, 1 alarm relay, 3 solenoid valve relays
							N				er module unit without relay
							1				dule position 3
								Applic		p.000	
								S		ing poo	
								D	Potable	e water/c	disinfection
									Langu	age def	ault
									DE	Germa	n
									EN	English	1
									ES	Spanis	
									FR	French	
									IT	Italian	
									PL	Polish	
									NL	Dutch	
									CZ	Czech	
										Approv 01	vals I CE mark
										U I	OE IIIaik

Please note the following!

Upgrade modules for existing systems require a software update for the existing system. A Software Update Kit is needed to avoid any possible incompatibility between the different modules.

The update kit is free of charge and one is also needed when ordering more than one upgrade module. The kit includes an SD memory card with the current software for the DULCOMARIN® II and a description about how to perform the software update.

Order no. 1031284

Update kit/DXC and modules

The Identity code describes the complete **DULCOMARIN®II DULCO®-Net** central unit.

The peripheral components mentioned in the above item list, however, are not included. If modules are assigned to the central unit, the following applies:

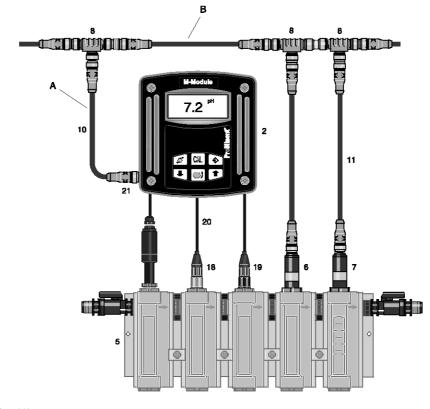
Module 1 preferably assigned as M module

Module 2 preferably assigned as A module

Module 3 must always be assigned as P module or N module.

Important note when ordering multi-channel measuring and control systems for potable water and pool water applications:

Potable water applications: In the identity code, a "D" for "Potable water/disinfection" must be selected under "Version" and "Application". The description "System" will appear in the controller menu for the different potable water lines.


Swimming pool water applications: In the identity code, a "0" for "with operating elements" must be selected under "Version" and then an "S" for "Swimming pool" under "Application". The description "Tank" will appear in the controller menu for the different filter circuits.

All adjustment options and the use of the different modules are identical with both applications.

2.4.9

Measuring Module (M module)

- A Stub cable
- B Main BUS cable

pk_5_042

The M module with its illuminated graphic display and keypad displays the measured values and allows all sensors for the corresponding filter circuit to be calibrated on site.

The following measurements can be taken:

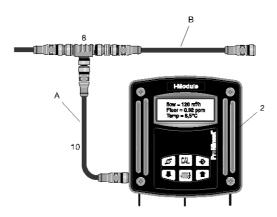
- pH value
- ORP potential
- Free chlorine and
- Total available chlorine (optional or combined chlorine is calculated) and
- Sample water temperature using the temperature probe in the chlorine sensor or optionally using a separate Pt100/Pt1000 resistance thermometer

The M module has 3 digital inputs for:

- Sample water monitoring
- Controlling breaks in filter backwashing
- Parameter changeover for Eco!Mode

The M module is connected to the other bus modules via the main bus cable, using the T-distributor supplied and the 0.5 m CAN connection cable.

The M module in the above example consists of the following components:


Ite m	Quantity	Name	Order no.
2	1	M module DXMa M W 0 S EN 01	DXMa M W 0 S EN 01
5	1	In-line probe housing DGMa 3 2 2 T 0 0 0	DGMa 3 2 2 T 0 0 0
6	1	Chlorine sensor CTE 1-CAN-10 ppm	1023427
7	1	Chlorine sensor CLE 3.1-CAN-10 ppm	1023426
8	3	T-distributor M12 5 pole CAN	Included in delivery
10	1	Connection cable - CAN M12 5-pole 0.5 m	Included in delivery
11	2	Connection cable - CAN M12 5-pole 0.5 m	Included in delivery
18	1	pH sensor PHES 112 SE	150702
19	1	ORP sensor RHES-Pt-SE	150703
20	2	Cable combination coaxial Ø 5 mm 2 m - SN6 - pre- assembled	1024106
21	2 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

2.4.10

Current Input Module (I module)

- A Stub cable
- B Main BUS cable

AP_DC_0011_SW

This I module with its illuminated graphic display and keypad is a current input module capable of processing 3 standard signals from sensors and two digital signals.

It can be used together with the multi-channel controller DULCOMARIN® II in potable water and swimming pool applications. All measured variables are available in the screen plotter and web and OPC® server.

Two analogue inputs are provided as 2-wire inputs and one as passive input. All channels have preselected measured variables. However the identifier and units can also be edited. Channel 1 acts as an interference variable channel for channel 2. Channel 3 acts as the temperature compensation channel for channel 2 when the measured variable is fluoride. Channel 2 has a control function.

The inputs can process the following values as 0/4... 20 mA standard signals:

- Turbidity
- Flow (can also be used as the disturbance variable)
- UV intensity
- Conductivity (via DMTa transmitter)
- Chlorine dioxide
- Chlorite
- Ammonia
- Fluoride
- Pt100 resistance thermometer via a transducer
- Dissolved oxygen
- Hydrogen peroxide
- Editable designation and unit for all 3 channels

The I module has 2 digital inputs for:

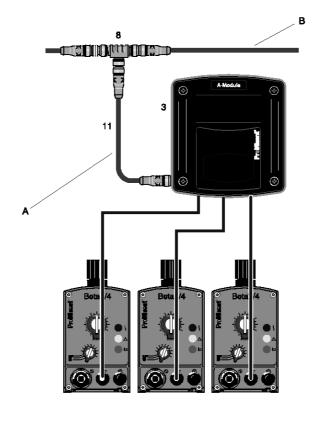
- Sample water monitoring and
- Pause control

The flow information can be used as a disturbance variable for the control of chlorine, pH correction and chlorine dioxide.

The I module is connected to other bus modules via the main bus cable using the T-distributor and 0.5 m CAN connection cable supplied as part of the delivery.

The I module in the above example consists of the following components:

Item	Quantity	Name	Order no.
2	1	I module DXMa I W 0 D EN 01	-
8	1	T-distributor M12 5P CAN	Included in delivery
10	1	Connecting cable - CAN, M12, 5P, 0.5 m	Included in delivery



ProMinent

2.4.11

Control Module (A module)

- A Stub cable
- B Main BUS cable

pk_5_043

The A module permits the control of up to three metering pumps via pulse frequency. Possible metering combinations are:

- pH lowering and disinfectant and flocculant or
- pH raising and disinfectant and flocculant or
- pH lowering and pH raising and disinfectant

It includes 3 digital inputs to evaluate the alarm relay of metering pumps, 4 freely programmable standard signal outputs 0/4...20 mA to document measured values, or as control outputs.

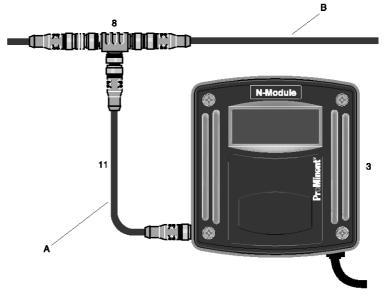
The T-distributor and 0.5 m CAN connecting cable included in the scope of delivery are used for this connection

Note: No A modules are required if Beta®/4CANopen metering pumps are used!

The A module in the above example consists of the following components (without metering technology):

Item	Quantity	Name	Order no.
3	1	A module DXMa A W 2 0 00 01	-
8	1	T-distributor M12 5 pol. CAN	Included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	Included in delivery

The A module is connected to other units via the main bus train.


An isolating amplifier, e.g. order no. 1033536 is required for connection to units which are not electrically isolated (e.g. PLC)!

2.4.12

Power Supply Module (N module)

- A Stub cable
- B Main BUS cable

pk_5_043_C_power

The N module (power supply) is used to supply the bus modules with power and has no further function.

The number of N modules required can be seen from the table below. If P modules are used in a system, the number of N modules is reduced accordingly. The central unit always includes a power supply unit (N or P module)

How many additional N or P modules do you require?

Number of filtration circuits	Additional N or P modules	Number of filtration circuits	Additional N or P modules
1	-	9	4
2	-	10	5
3	1	11	5
4	2	12	6
5	2	13	6
6	3	14	7
7	3	15	7
8	4	16	8

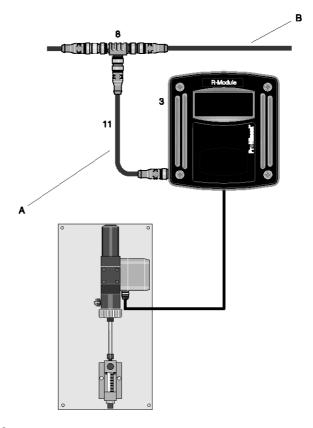
The N module requires a power supply for operation and is connected to the other bus modules via the main bus train. The T-distributor and 0.5 m CAN connecting cable included in the scope of delivery are used for this connection.

The N module in the above example consists of the following components:

Item	Quantity	Name	Order no.
3	1	N module DXMa N W 2 0 00 01	-
8	1	T-distributor M12 5 pol. CAN	Included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	Included in delivery

Our Sales department would be glad to assist with any questions you may have.

Measuring and Control Technology


Control System DULCOMARIN® II

Multi-Channel Multi-Parameter Measuring and

2.4.13

Control Module for Chlorine Gas Metering Devices (R module)

A Stub cable B Main BUS cable

pk_5_043_C

The R module permits the control of chlorine gas metering units equipped with a position feedback

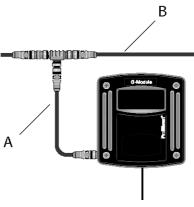
It includes 2 power relays for opening and closing and an input for a position feedback potentiometer

The R module is connected to other units via the main bus train.

The T-distributor and 0.5 m CAN connecting cable included in the scope of delivery are used for this

The R module in the above example consists of the following components (without the chlorine gas metering device):

Item	Quantity	Name	Order no.
3	1	R module DXMa R W 2 0 00 01	-
8	1	T-distributor M12 5 pol. CAN	Included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	Included in delivery


Our Sales department would be glad to assist with any questions you may have.

2.4.14

Limit Value and Alarm Module (G module)

- A Stub cable
- B Bus main cable

P_DM_0024_SW3

The G-module is a limit value and alarm emitting module with 2 potential-free changeover relays to signal alarm states. Each of the two relays has ten different setting options to monitor measured values for minimum and maximum values and, should the values exceed or fall below these limits, this then triggers the relay. Both relays have the same setting options, thereby enabling signals for pre-warnings or shutdowns to be generated by the use of different delay periods.

The G module is connected to the other units via the main bus cable using the T-distributor and $0.5 \, m$ CAN connection cable supplied.

The G module in the above example consists of the following components:

Item	Quantity	Name	Order no.
3	1	G module DXMa G W 2 0 00 01	-
8	1	T-distributor M12 5 pol. CAN	Included in delivery
11	1	Connection cable - CAN M12 5 way 0.5 m	Included in delivery

Our Sales department would be glad to assist with any questions you may have.

2.4.15

Identity Code Ordering System for CANopen Modules

Modules for the DULCOMARIN® II, DXM serie

DXMa	Modu	le							
	М	M mod	M module, measuring module: pH, ORP, temperature						
	Α	A mod	A module, control module: 3 pump and 4 analogue outputs						
	R	R mod	ule, con	trol mod	lule: chlo	rine gas metering unit with feedback 1), 2)			
	N	N mod	ule, mai	ns powe	er modul	e without relay ^{1), 2)}			
	Р					with relay, only mounting type "0" 1), 2)			
	1	I modu	le, curre	nt input	module	3 mA inputs, 2 digital inputs			
		Install		·					
		0		ısing, or	nly P mo	tule (IP 00)			
		W	Wall m	ounting	(IP 65)				
		E	Retrofi	t module	e (install	ttion module for DXCa, IP 20)			
			Versio	n					
			0	With co	ontrols (only M module, mounting type W) ¹			
			2	Withou	ıt contro	s			
			3	Withou	it contol:	(only mounting type "E")			
				Applic	ation				
				0	Standa	rd			
				S	Swimm	ing pool (only M-module)			
				D	Potable	water/disinfection (only I module)			
					Langu	age default			
					00	No controls 2)			
					DE	German			
					EN	English			
					ES	Spanish			
					FR	French			
						Approvals			
						00 No approval, only P-module without housing			
						01 CE mark			

Please note the following:

Upgrade modules for existing systems require a software update for the existing system. A Software Update Kit is needed to avoid any possible incompatibility between the different modules.

The update kit is free of charge and one is also needed when ordering more than one upgrade module. The kit includes an SD memory card with the current software for the DULCOMARIN® II and a description about how to perform the software update.

Order no.
1001001

Update kit/DXC and modules	1031284

2.4.16 Spare Parts and Upgrade Sets

Internal spare parts and upgrade sets for the DULCOMARIN® II cannot be ordered using the part number printed on the modules!

Modules have to be fully replaced (the exception to this is the N module).

The electrical unit for the central unit can only be replaced by a complete processor spare part.

Please use only the following identity codes when ordering:

Replacement central units

- Replacement central unit: DXCAC001000#DE01 (without communication interface, # = please state "S" for applications in swimming pools and "D" for applications relating to potable water).
- Replacement central unit: DXCAC051000#DE01 (with web server, # = please state "S" for applications in swimming pools and "D" for applications relating to potable water).
- Replacement central unit: DXCAC061000#DE01 (with OPC and web server, # = please state "S" for applications in swimming pools and "D" for applications relating to potable water).

External modules (replacement or upgrade modules):

- M module: DXMa M W 0 S EN 01 (with display)
- A module: DXMa AW2 0 00 01 (without display)
- N module: DXMa N W 2 0 00 01 (without display)
- R module: DXMa R W2 0 00 01 (without display)
- G module: DXMa G W2 0 00 01 (without display)
- P module: DXCa W 2 00 00 PS 00 01 (without display in large DXC housing)
- I module: DXMa I W 0 D D E 01 (with display)
- I module: DXMa I W 2 D 0 0 0 1 (without display)

Internal modules (replacement or upgrade modules):

M module: DXMa M E3S 00 01
 A module: DXMa A E30 00 01
 P module: DXMa P03 00 00
 I module: DXMa I E 3 D 00 01

N module: Order no. 732485, electrical set DXMaN 24 V/1A

2.4.17 Retrofit Kits for DULCOMARIN® II DXC

The DULCOMARIN® II can be upgraded in-situ with the web server and OPC server functions. The upgrade is implemented by entry of an activation key. The activation key can be entered either manually via the keyboard into the DULCOMARIN® II or via an SD card. The SD card is supplied.

The following information is needed to determine the device-specific activation codes:

- 1 Serial number and software version of the DULCOMARIN® II. This can be found under F1 HELP.
- 2 Current identity code. This can be found under F1 HELP.
- 3 Required upgrade.

	Order no.
DXC retrofit kit on web server, including LAN cable and instructions	1029466
DXC retrofit kit on web server + OPC server, including LAN cable and instructions	1029465
DXC retrofit kit on web server + OPC server, including instructions and OPC CD-ROM	1029467
DXC retrofit kit SoftPLC**	1049734
DXC retrofit kit KNX* **	1049735
DXC retrofit kit SMS_EMAIL*	1049736
DXC retrofit kit SoftPLC, KNX, TEXT_EMAIL* **	1049737
DXC retrofit kit SoftPLC, TEXT_EMAIL* **	1049738
DXC retrofit kit SoftPLC, KNX* **	1049739
DXC retrofit kit KNX, TEXT_EMAIL* **	1049740

- * Order the gateways/routers separately. Communication option 5 or 6 is always needed.
- ** Available from software version 3030 or higher.

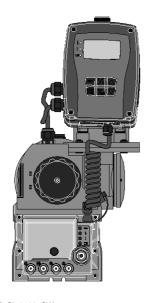
2.4.18

Diaphragm Metering Pumps with CANopen Bus Interface

■ CANopen bus interface for DULCOMARIN® II

■ Pump capacity 0.2-1,030 l/h

- Stroke length continuously adjustable between 0 100% (recommended 30 100%)
- Transmission of the stroke length setting from the DULCOMARIN® II
- Material designs PP, clear acrylic/PVC
- Patented coarse/fine bleed valve for PP and clear acrylic/PVC
- Self-bleeding dosing head design in PP and clear acrylic/PVC
- Connector for 2-stage level switch
- Design for low voltage 12-24 V DC, 24 V AC
- 4 LED display for operation, warning and error messages
- Alarm in the event of stroke length changes of > ± 10%
- Transmission of level alarm without alarm relay via the bus


Diaphragm metering pumps are contained in Volume 1 on the following pages: Solenoid Driven Metering Pump Beta® → 1-7, Solenoid Driven Metering Pump delta® → 1-21.

Process metering pumps are contained in Volume 3 on the following pages: Motor Driven Metering Pump Sigma/ 1 (Basic Type) \rightarrow 1-9, Motor Driven Metering Pump Sigma/ 2 (Basic Type) \rightarrow 1-29, Motor Driven Metering Pump Sigma/ 3 (Basic Type) \rightarrow 1-49

P_DE_0002_SW delta®

Beta®

P_SI_0129_SW Sigma/ 1 control type

2.4.19

Solenoid Driven Metering Pumps Beta®

- CANopen bus interface for DULCOMARIN® II
- Feed rate range of 0.74 32 l/h, 16 2 bar
- Stroke length continuously adjustable between 0 100% (recommended 30 100%)
- Transmission of the stroke length setting from the DULCOMARIN® II
- Material versions PP, clear acrylic/PVC
- Patented coarse / fine bleed valve for PP and clear acrylic/PVC
- Self-bleeding dosing head version in PP and clear acrylic/PVC
- Connection for 2-stage level switch
- Version for low voltage 12-24 V DC, 24 V AC
- 4 LED display for operation, warning and error messages

pk_1_004_2

Technical Data

Pump type	Delivery rate at max. back pressure		Delivery rate at medium back pressure		Stroke rate	Connection size o Ø x i Ø	Suction lift	Shipping weight PP, NP, PV, TT		
	bar	l/h	ml/stroke	bar	l/h	ml/stroke	Strokes/min	mm	mWC	kg
Beta [®]										
BT4a 1000***	10	0.74	0.07	5.0	0.82	0.08	180	6 x 4	6.0**	2.9
BT4a 1601***	16	1.10	0.10	8.0	1.40	0.13	180	6 x 4	6.0**	2.9
BT4a 1602***	16	2.10	0.19	8.0	2.50	0.24	180	6 x 4	6.0**	2.9
BT4a 1005***	10	4.40	0.41	5.0	5.00	0.46	180	8 x 5****	6.0**	3.1
BT4a 0708***	7	7.10	0.66	3.5	8.40	0.78	180	8 x 5	6.0**	3.1
BT4a 0413	4	12.30	1.14	2.0	14.20	1.31	180	8 x 5	3.0**	3.1
BT4a 0220	2	19.00	1.76	1.0	20.90	1.94	180	12 x 9	2.0**	3.3
Beta® metering	pumps	with se	f-bleeding d	osing he	ad*					
BT4a 1601	16	0.59	0.06	8.0	0.78	0.07	180	6 x 4	1.8**	2.9
BT4a 1602	16	1.40	0.13	8.0	1.70	0.16	180	6 x 4	2.1**	2.9
BT4a 1005	10	3.60	0.33	5.0	4.00	0.37	180	8 x 5	2.7**	3.1
BT4a 0708	7	6.60	0.61	3.5	7.50	0.69	180	8 x 5	2.0**	3.1
BT4a 0413	4	10.80	1.00	2.0	12.60	1.17	180	8 x 5	2.0**	3.1
BT4a 0220	2	16.20	1.50	1.0	18.00	1.67	180	12 x 9	2.0**	3.3

- * The given performance data constitutes assured minimum values, calculated using medium water at room temperature. The bypass connection with a self-bleeding dosing head is 6x4 mm.
- ** Suction lift with a filled dosing head and filled suction line, for a self-bleeding dosing head with air in the suction line.
- *** For special applications, e.g. in the swimming pool sector, pressure-reduced pump types are available in the pressure ratings 4, 7 and 10 bar. More detailed information is available upon request.
- **** For stainless steel version 6 mm connector width.

Materials in Contact With the Medium

	Dosing head	Suction/discharge connector	Seals	Valve balls
PPE	Polypropylene	Polypropylene	EPDM	ceramic
PPB	Polypropylene	Polypropylene	FKM	ceramic
NPE	Clear acrylic	PVC	EPDM	ceramic
NPB	Clear acrylic	PVC	FKM	ceramic

Only the self-bleeding version in PP and NPE material versions with a valve spring made of Hastelloy C and a valve insert in PVDF. Metering diaphragm with a PTFE coating.

FKM = Fluorine Rubber

Repeatability of metering $\pm 2\%$ when used according to the operating instructions.

Permissible ambient temperature -10 °C to +45 °C

Mean power consumption Type 1000-0220 17 W

Degree of protection: IP 65, insulation class F

Scope of supply: Metering pump with mains cable (2 m) and plug, connector kit for hose/pipe connection as per table, connecting cable CAN M12 5 pole. 1 m, T-coupler M12 5-pole CAN.

Beta® product range, Version a

Туре	Capac	ity											
	bar	l/h											
1605	16	4.10											
	10	6.80											
	7												
		11.00											
	4	17.10											
	2	32.00											
1 1000	10	0.74											
1000	10	0.74											
1601	16	1.10											
	16	2.10											
1005	10	4.40											
0708	7	7.10											
0413	4	12.30											
	2	19.00											
0220			lve mat	torial									
	PP			polypro	nylono								
					pylene								
	NP		crylic/P	VC									
	PV	PVDF/											
	TT	PTFE/F	PTFE										
	SS	Stainle	ss steel	1.4404	1.4404								
				m mate									
		E				only for F	PP and N	NP.					
		В				only for							
		T				nly for P							
									dio	oiniss :	vilionto "	WM D -	eals for PP and NP, PTFE for TT, PV and SS
		S		•		Jilai FKI	vi coatin	y ior me	uia con	arring s	silicate, F	L/INI-D S	eais for PP and NP, PTPE for TT, PV and SS
				end ve									
			0					•	-				PP and PC
			1	Withou	ıt bleed,	, with val	lve sprin	ig only fo	or TT, S	S and ty	pe 0232	NP, PP	and PC
			2	With b	leed, wit	thout val	lve sprin	g only fo	or PP, P	VT, NP	not for ty	pe 0232	2
			3	With b	leed. wi	th valve	sprina o	nlv for P	P. PVT	NP not	for type	0232	
			4					,	,		, ,		3, 1008, 0413, 0713, 0220, 0420
			9			only for F						55, 67 60	5, 1000, 0410, 0710, 0220, 0420
			9					lot lot ty	pes ruc	o and c	1232		
						nnectio							
				0		ard conn			-		ata		
				5	Conne	ctor for	12/6 tub	e, disch	arge sid	e only			
				9	Conne	ctor for	10/4 tub	e, disch	arge sid	e only			
					Version	n							
					0	With P	roMinen	it® logo					
						Power	supply	,					
						Α		230 V ±	10%. 50	/60 Hz			
						В		115 V ±					
						Ū		80 V ± 10					
											- 1000 0	000\	huwith O me connecting cable and and
						M							ly with 2 m connecting cable open end
						N)5-0232	only wit	th 2 m connecting cable open end
						Р	24 V A	C ± 10%	all type	es			
							Cable	and plu	ıg				
							Α	2 m Eu	rope				
							В	2 m Sv	viss				
							С	2 m Au	stralia				
							D	2 m US					
							1						
							1'	2 m op	en end				
								Relay	1.1				
				1	1			0	No rela	•			
								1	Fault in	ndicating	g relay N	C, (chai	nge-over relay)
								3	Fault in	ndicatin	relay N	O, (cha	nge-over relay)
								4	As 1 +	pacina	relay, (e	ach 1xO	ON)
								5			relay, (e		
				1	1			آ			· Jiay, (C	2011 170	···· <i>y</i>
						1				sories	20002=1-		
									0		cessorie		
				1	1			1	1			njection	valve, 2 m PVC suction line, 5 m PE metering lin
				1	1			1		Contr	ol type		
						1				0	No loci	(
						1				1			ual operation blocked when external cable plugge
1										1	in		- I - I - I - I - I - I - I - I - I - I
												l Varia	nts
		1	1		1						D		ANopen interface for DULCOMARIN® II
								1	1	•			
													•
												Option	ns on request
													•

2.4.20

Multi-Channel Measuring and Control System DULCOMARIN® II, **Module Combinations**

Number and type of modules required for a given number of pools

Number of filtration circuits	Central unit DXCa	P module	M module	A module*	Additional N or P module (power supply unit)	Free chlorine sensor	Total chlorine sensor (optional)
1	1	1	1	1	-	1	1
2	1	1	2	2	-	2	2
3	1	1	3	3	1	3	3
4	1	1	4	4	2	4	4
5	1	1	5	5	2	5	5
6	1	1	6	6	3	6	6
7	1	1	7	7	3	7	7
8	1	1	8	8	4	8	8
9	1	1	9	9	4	9	9
10	1	1	10	10	5	10	10
11	1	1	11	11	5	11	11
12	1	1	12	12	6	12	12
13	1	1	13	13	6	13	13
14	1	1	14	14	7	14	14
15	1	1	15	15	7	15	15
16	1	1	16	16	8	16	16

* No A module if metering pumps with CANopen are used. The above modules include all CAN bus connecting elements (T-distributor and spur line). The T-distributors can also be directly coupled. For distributed systems, the CAN cable must be ordered by the metre with the by-the-metre connecting kit.

	Order no.
CAN bulk cable connection kit*	1026589
Connecting cable - CAN, sold by the metre*	1022160

The CAN by-the-metre connecting kit consists of a CAN coupling M12 5P and a CAN connector M12 5P and a wiring diagram.

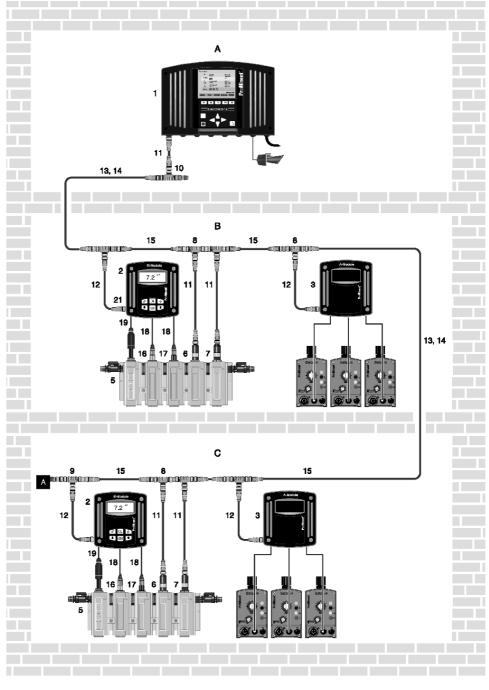
The by-the-metre connecting cable can be configured into a cable of individual length using the CAN by-the-metre connecting kit.

One CAN by-the-metre connecting kit is required for each cable to be configured.

The connecting cables CAN M12 5P 0.5 m (pump 1 m) supplied with the sensors and modules should be used for the spur lines.

If you have any questions, please contact our sales department.

Caution:


The maximum main bus length (not including stubs) should be at most 400 m.

2.4.21

Configuration Example 1

- A Pool attendant's room
- B Engineering room pool 1
- C Engineering room pool 2

pk_5_022_1

Attention:

It is very important that you adhere precisely to the principle of the design shown above because otherwise correct function is not guaranteed!

Measuring and control system for two potable water systems/filtration circuits consisting of the following components:

Item	Quantity	Name	Order no.
1	1	DULCOMARIN® II central unit	_
		DXCa W 0 0 1 0 0 P S EN 01	
2	2	M module DXMa M W 0 S EN 01	-
3	2	A module DXMa A W 2 0 00 01	-
5	2	DULCOTEST® in-line probe housing DGMa 3 2 2 T 0 0 0	-
6	2	Chlorine sensor CTE 1-CAN-10 ppm	1023427
7	2	Chlorine sensor CLE 3.1-CAN-10 ppm	1023426
8	9	T-distributor M12 5-pole CAN	Included in delivery
9	1	Termination resistance M12 coupling	Included in delivery
10	1	Termination resistance M12 plug	Included in delivery
11	5	Connection cable - CAN M12 5-way 0.5 m	Included in delivery
12	5	Connection cable - CAN M12 5-way 0.3 m	Included in delivery
13	-	Connecting cable - CAN, sold by the metre	1022160
14	-	CAN bulk cable connection kit	1026589
15	-	CAN M12 5-pole connection cable - length as required	-
16	2	pH sensor PHES 112 SE	150702
17	2	ORP sensor RHES-Pt-SE	150703
18	4	Cable combination coaxial Ø 5 mm 2 m - SN6 - pre-	1024106
		assembled	
19	4 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

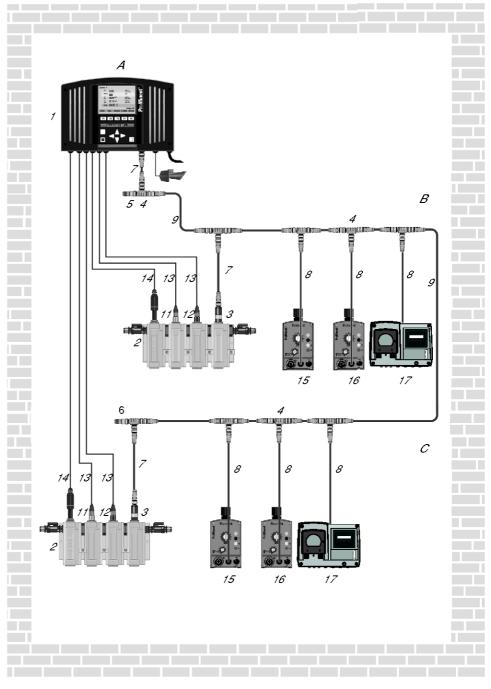
The CAN by-the-metre connecting kit consists of a CAN coupling M12 5P and a CAN connector M12 5P and a wiring diagram.

One CAN by-the-metre connecting kit is required for each cable to be configured.

The connecting cables CAN M12 5P 0.5 m (pump 1 m) supplied with the sensors and modules should be used for the spur lines.

Caution:

The maximum main bus length (not including spur lines) should be at most 400 m.


The by-the-metre connecting cable can be configured into a cable of individual length using the CAN bythe-metre connecting kit.

2.4.22

Configuration Example: 2-Pool System

Two M modules in a central unit, use of metering pumps with CANopen bus.

- A Engineering room
- B Pool 1
- C Pool 2

pk_5_022_neu

Attention:

It is very important that you adhere precisely to the principle of the design shown above because otherwise correct function is not guaranteed!

Measuring and control system for two filter circuits consisting of the following components:

	_		-
Item	Quantity	Name	Order no.
1	1	DULCOMARIN®II central unit	-
		DXCa W 0 0 1 M M P S EN 01	
2	2	DULCOTEST® in-line probe housing DGMa 3 2 2 T 0 0 0	-
3	2	Chlorine sensor CLE 3-CAN-10 ppm	1023425
4	9	T-distributor M12 5 pole CAN	Included in delivery
5	1	Termination resistor M12 connector	Included in delivery
6	1	Termination resistor M12 plug	Included in delivery
7	5	Connection cable - CAN M12 5-pole 0.5 m	Included in delivery
8	6	Connection cable - CAN M12 5-pole 0.3 m	Included in delivery
9	-	Connecting cable - CAN M12 5-pin. 10 m*	1046383
11	2	pH sensor PHES 112 SE	150702
12	2	ORP sensor RHES-Pt-SE	150703
13	4	Cable combination coaxial Ø 5 mm 2 m - SN6 - pre- assembled	1024106
14	4 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
15	2	Beta®/ 4 CANopen for pH correction BT4A0402PVT290UA000D00**	-
16	2	Beta [®] / 4 CANopen for disinfectant BT4A0402PVT290UA000D00**	-
17	2	DF4a CAN for flocculant DF4aFW004015P9UA00001D10	-

 $^{^{\}star}\,$ Up to 3 can be coupled from the connecting cable CAN M 12 5-pin 10 m.

Do not allow the maximum main bus length (without branch cables) to exceed 400 m.

^{**} Suggested configuration

2.4.23

Accessories for the DULCOMARIN® II Measuring and Control System

	Order no.
CLE 3-CAN-10 ppm	1023425
CLE 3.1-CAN-10 ppm	1023426
CTE 1-CAN-10 ppm	1023427
BRE 3-CAN-10 ppm	1029660
T-distributor M12 5 pole CAN	1022155
Termination resistor M12 coupling	1022154
Termination resistor M12 plug	1022592
Connecting cable - CAN M12 5 pole 0.3 m	1024568
Connecting cable - CAN M12 5-pole 0.5 m	1022137
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin. 10 m*	1046383
Connecting cable - CAN M12 5-pole 25 m	1055588
Connecting cable - CAN M12 5-pole 50 m	1055589
Connecting cable - CAN, sold by the metre	1022160
CAN bulk cable connection kit	1026589
PHES 112 SE	150702
RHES-Pt-SE	150703
Cable combination coaxial Ø 5 mm 0.8 m - SN6 - pre-assembled	1024105
Cable combination Coaxial Ø 5 mm 2 m - SN6 - pre-assembled	1024106
Cable combination coaxial Ø 5 mm 5 m - SN6 - pre-assembled	1024107
Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
Connecting cable LAN M12 - RJ45 5.0 m	1026715
Cross-over patch cable 2x RJ45 connector 5 m	1027859
LAN coupling 2x RJ45 socket 1:1	1027860
USB 2.0 SD card reader	732981
SD memory card/DXC measuring data archiving	1027470
Isolating amplifier 4-channel for mA outputs of the A module	1033536

Up to 3 cables, each 10 m, can be coupled

The CAN bulk cable connection kit comprises a 5-pin M12 CAN coupling and a 5-pin M12 CAN plug and a wiring diagram.

The CAN bulk cable connection kit can be used to configure the connecting cable to form a cable of any required length.

One CAN bulk cable connection kit is required for each cable to be assembled.

The $0.5~\mathrm{m}$ (1 m pump) 5-pin M 12 CAN connecting cables supplied with the sensors and modules have to be used as branch cables.

Caution:

Do not allow the maximum main bus length (excluding branch cables) to exceed 400 m!

Measuring and Control Technology

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

P_MSRZ_0014_SW

PROFIBUS®-DP V1 Gateway

The CANopen – PROFIBUS®-DP V1 gateway is an interface based on CANopen, which connects the DULCOMARIN® II swimming pool controller or disinfection controller to a PROFIBUS® DP network. Here the DULCOMARIN® II is configured as the slave and the PLC is the master. Data traffic can be cyclic or acyclic. The measured values are transmitted cyclically. Setpoints can be changed, the system can be set to pause control and Eco!Mode operation can be activated in acyclic traffic. The corresponding GSD file can be downloaded from the ProMinent website and is also contained on the enclosed data medium.

The module is intended for installation in a control cabinet (top hat rail) and is connected to the CAN bus in the same way as other modules. The controller DULCOMARIN® II must have software version 3022 or higher. No specific identity code is needed.

Note: A separate 24 V DC voltage supply is required.

Voltage supply24 V DCTypical power consumption approx.500 mAMax. number of measured values116Weight250 g

Dimensions L x W x H (mm) 117.2 x 45 x 113.5 mm

RoHS (Restriction of Hazardous Substances) Yes
CE conformity Yes
Enclosure rating IP 20

Order no.

CANopen - PROFIBUS®-DP V1 gateway complete 1044462

Modbus RTU Gateway

The CANopen - Modbus RTU gateway is an interface based on CANopen, which connects the DULCOMARIN® II swimming pool controller or disinfection controller to a Modbus RTU network. Here the DULCOMARIN® II is configured as the slave and the PLC is the master. Data traffic can be cyclic or acyclic. The measured values are transmitted cyclically. Setpoints can be changed, the system can be set to pause control and EcolMode operation can be activated in acyclic traffic. The corresponding description table can be found in the operating instructions. These be downloaded from the ProMinent website and are also contained on the enclosed data medium.

The module is intended for installation in a control cabinet (top hat rail) and is connected to the CAN bus in the same way as other modules. No specific identity code is needed.

Note: A separate 24 V DC voltage supply is required.

Voltage supply24 V DCTypical power consumption approx.500 mAMax. number of measured values116Weight250 g

Dimensions L x W x H (mm) 117.2 x 45 x 113.5 mm

RoHS (Restriction of Hazardous Substances) Yes
CE conformity Yes
Enclosure rating IP 20

Gateway CANopen - Modbus RTU 1047247

P_MSRZ_0014_SW

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

Ethernet KNX Gateway

The Ethernet – KNX gateway is an Ethernet-based interface that connects the DULCOMARIN® II swimming pool controller or disinfection controller to a KNX building control system. The measured values and status messages from one system can be transmitted. No feedback effect from the KNX network is possible.

The module is intended for installation in a control cabinet (top hat rail) and is connected to the LAN/ Ethernet connector of the DXCa. The DXCa needs to have communication option 5 = web server or 8 = web server + OPC server for this.

Note: A separate 24 V DC power supply is required.

Voltage supply12-24 V DoTypical power consumption approx.500 mAMax. number of measured values20

(max. 2-pool system)

Weight 100 g

Dimensions L x W x H (mm) 117.2 x 60 x 113.5 mm

RoHS (Restriction of Hazardous Yes

Substances)

CE conformity Yes
Enclosure rating IP 20

ER75i Mobile Phone Router (GSM/GPRS/EDGE)

Weinzier

KNX

_Ethernel

KNX (E KNX/IP

BAOS 771

P_MSRZ_0018_SW1

You can connect to your disinfection controller DULCOMARIN® II using the mobile communications router ER75i irrespective of distance. Mobile Ethernet makes it possible to use the available infrastructure for location-independent Ethernet communication. In addition to GSM and GPRS, EDGE technology can also be used for data transfer. Stable and permanent connections are monitored and maintained through continuous control. An integrated DHCP server makes possible simple installation and fast Internet access. The ideal device for alarm signalling, remote maintenance and remote service.

Note: The mobile communications router ER75i is specially configured for the disinfection controller DULCOMARIN® II. The controller must have at least communication interface option 5, "Embedded web server". The mobile communications router is not included in this DXCa option.

Important for operation of the mobile communications router:

- The products do not include a mobile communications data contract, which has to be concluded separately with a mobile communications provider.
- Please check in advance the network coverage of your mobile communications provider.
- Make sure that the installation can be installed in a place whether the received signal has sufficient strength and there is also a power supply.

Scope of delivery: Router, CD, patch cable, magnetic foot aerial, plug-in power pack

GPRS/EDGE (class 10) mobile phone router for industrial applications (max. download 236 Kbit/s, max. upload 118.4 Kbit/s)

Single web-interface, DHCP, DynDNS, VRRP, NTP, dial-in router control via SMS

Data volume / roaming control via SMS Status Information via SNMP and SMS

LED status display

Frequency bands: 850/900/1800/1900 MHz

Dimensions: 30 x 90 x 102 mm, plastic housing, also for wall mounting

Weight: 190 g (without aerial and plug-in power pack)

Degree of protection: IP 44, for use in dry rooms or offices

Order no.

GSM/GPRS/EDGE mobile phone router ER75i 1047329

2-72 Product Catalogue 2018 1.1.2018

Measuring and Control Technology

2.4 Multi-Channel Multi-Parameter Measuring and Control System DULCOMARIN® II

(AST) 2 (AST)

P_MSRZ_0019_SW1

UR5i Mobile Phone Router (UMTS/HSPA+)

You can connect to your disinfection controller DULCOMARIN® II using the mobile communications router UR5i via UMTS/HSPA+ irrespective of the distance. Mobile Ethernet makes it possible to use the available infrastructure for location-independent Ethernet communication. UMTS/HSPA+ technology can be used for data transfer. Stable and permanent connections are monitored and maintained through continuous control. An integrated DHCP server makes possible simple installation and fast Internet access. The ideal device for alarm signalling, remote maintenance and remote service. With WLAN access. The WLAN access has no bridge function for connection of another WLAN network.

Note: The mobile communications router is specially configured for the disinfection controller DULCOMARIN® II. The controller must have at least option 4, "Alarm signalling via SMS / email", or higher. The mobile communications router is not included in this DXCa option.

Important for operation of the mobile communications router:

- The products do not include a mobile communications data contract, which has to be concluded separately with a mobile communications provider.
- Please check in advance the network coverage of your mobile communications provider.
- Make sure that the installation can be installed in a place whether the received signal has sufficient strength and there is also a power supply.

Scope of delivery: Router, CD, patch cable, magnetic foot aerial, plug-in power pack. Degree of protection: IP 44, for use in dry rooms or offices.

UMTS/HSPA+ Tri-Band (max. download 14.4 Mbit/s, max. upload 5.7 Mbit/s)

WLAN supported NAT/PAT and X.509

Integrated firewall (SPI)

Single web-interface, DHCP, DynDNS, VRRP, dial-in router control via SMS

Data volume / roaming control via SMS

Status information via SNMP and SMS

Extensive mobile connection statistics options

LED status display

Frequency bands: GSM/GPRS/EDGE: 850/900/1800/1900 MHz

UMTS: 850/900/1900/2100 MHz

External GSM aerial:SMA - 50Ω Power supply: $10 \dots 30 \text{ V DC}$ Working temperature range: $-30 \text{ °C} \dots +60 \text{ °C}$

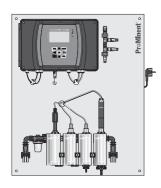
Dimensions: 50 x 84 x 117 mm, DIN top hat rail 35 mm

Weight: 207 g
Degree of protection: IP 44

Order no.

UMTS/HSPA+ mobile phone router UR5i v2F 1047330

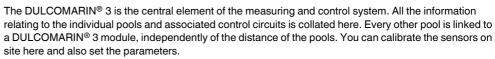
2.5.1


Measuring and control system DULCOMARIN® 3

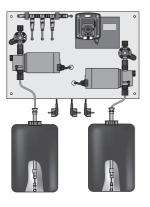
The DULCOMARIN® 3 will be available from April 2018. The DULCOMARIN® II will continue to be supplied up to this date.

New features and functions – a major step for the DULCOMARIN®. A gigantic step for your pool system.

The measuring and control system DULCOMARIN® 3 is your digital link to the technology of the future. It controls the entire range of swimming pools – from adventure pools to private pools. The system is operated using the large 7" touch display.



The measuring and control system DULCOMARIN® 3 is a reliable system for the treatment of swimming pool water. The new interactive start-up wizard uses questions about system planning to guide you through planning of your complete system. You can transfer the planning outcome and all components into the commissioning menu using drag & drop. This enables quick and easy commissioning of your measuring and control system DULCOMARIN® 3.


The intuitive menu guidance is also supported by videos. and shows step-by-step calibration of the sensors

It is operated using the system's touch display. You can also operate the DULCOMARIN® 3 remotely via the Internet. So you can connect to your DULCOMARIN® 3 using your smartphone or any other Internet-compatible end device. You can therefore also control other features, lighting, circulating pumps and filter backwash. The system can be extended at any time to meet future requirements.

The circulation capacity of the pumps adapts to the water quality in Eco! operating mode. Chemicals are metered precisely according to demand based on measured values, reducing ongoing energy costs and saving chemicals.

The DULCOMARIN® 3 is connected to a building management system via OPC and KNX. PROFIBUS® DP and Modbus RTU are available for connection to a PLC Programmable Logic Controller. Every DULCOMARIN® 3 module can be equipped with Wi-Fi for operation by tablet or smartphone.

Your benefits

- Energy- and cost-efficient control of your swimming pool
- The DULCOMARIN® 3 can be accessed from every internet-compatible device
- Simple calibration of the sensors with video support
- Fast product selection and configuration of your system via web browser
- Status messages and alarm by e-mail
- View and assess the time-based course of the measured values of all pools on the built-in screen writer
- Simple, unrestricted LAN connection like in your home network
- Subsequent extendibility due to the LAN-based bus system
- Intelligent chlorine sensors: save the sensor data and are always in the optimum measuring range with auto-ranging
- Intelligent metering pumps: provide information on operating parameters, such as chemical level statuses and pump capacity, within the range of 0.7 l/h to 1,000 l/h
- Coupling to a PLC Programmable Logic Controller via PROFIBUS® DP and Modbus RTU
- View historical measured data directly on the controller: enabled by the integral screen writer with data logger via USB

P_DD_0049_SW

Measuring and Control Technology

2.5 DULCOMARIN® 3 multi-channel multi-parameter measuring and control system for water treatment

Technical Details

- Measured variables: pH, ORP, free chlorine, total chlorine, combined chlorine, bromine, chlorine dioxide, ozone and temperature
- Precision: 0.5% of the measuring range limit value
- Control characteristic: P/PI/PID control
- Digital inputs: 8 potential-free control inputs e.g. for measured water errors, pause, control, parameter switch-over
- Modular ports: 4 to accommodate 2-channel I/O modules in each, selectable via identity code and retrofittable
- Pump relay (pulse frequency): 4
- Output relay: 3 potential-free changeover contacts, 3 changeover contacts supplied
- Signal current output: via 2-channel I/O modules 2 x 0/4-20 mA or 4 x 0/4-20 mA
- Interfaces: USB, LAN (Ethernet), Wi-Fi (WLAN)
- Supply voltage: $100 230 \text{ V} \pm 10 \%$, 50/60 Hz, optionally 24 V DC

Field of application

- Control and regulation of the entire range of swimming pools
- Water parks
- Public swimming pools
- High-end private pools

The applications are defined in the identity code

Every potable water system or every filtration circuit has a proprietary on-site calibration option for all measured variables.

What is the Eco! Mode operating mode?

Eco! Mode permits the circulation capacity to be lowered when the DIN hygiene parameters pH, ORP, free and combined chlorine are within the permitted limits.

A circulating pump with frequency converter with analogue input is needed for this.

The reduction can be activated via a remote control, dependent on the DIN hygiene parameters being observed, the time and appropriate activation. A combination of criteria is also possible. If the DIN hygiene parameters are no longer adhered to, then the circulation capacity is again raised to the nominal power.

Lowering pump capacity saves energy and, in so doing, reduces CO₂ emissions.

In addition, upon reaching an adjustable ORP potential, e.g. 780 mV, which signals effective disinfection of the water, chlorine metering is reduced either gradually or in one step. If the DIN hygiene parameters are no longer adhered to, then chlorine metering is again increased to the normal setpoint.

What is a web server?

A web server is a software application executed by the DULCOMARIN® 3.

The web server delivers web pages with information about measurements, control, sensor calibration and control configuration to a PC with a web browser (e.g. Microsoft® Internet Explorer).

The web server enables simple and straightforward visualisation of the DULCOMARIN® 3, without special visualisation software being required on the PC. The web server is independent of the PC's operating system

The DULCOMARIN® 3 is connected to a PC via a LAN/Ethernet interface. The connection can be made directly, via a network or via the internet. The cables needed for direct connection to a PC or network connection are included in the option.

Standard commercially available network components can be used as accessories for cables, routers and WLAN access points etc.

The same information can be accessed via the web server as is available on the DULCOMARIN® 3 itself, for instance changing setpoints for all control variables, switching off the different controllers and entering names for the pools/systems. The exceptions are the control settings and bus configuration that can only be entered directly on the controller.

What is OPC?

OPC stands for Openness, Productivity, Collaboration (formerly OLE for Process Control) and is used to describe a uniform software interface independent of specific manufacturers. OPC Data Access (OPC DA) is based on Windows COM (Component Object Model) and DCOM (Distributed Component Object Model) technology. OPC XML, in contrast, is based on the internet standards XML, SOAP and HTTP.

OPC is used wherever sensors, controllers and controls supplied by different manufacturers are used to create a common, flexible network. Without OPC, two devices would require precise knowledge about the communication options of the other device to be able to exchange data and extensions and exchanges would be correspondingly difficult. With OPC it is sufficient to write an OPC-compliant driver precisely once for each device and ideally this is provided by the manufacturer. An OPC driver can be integrated without

extensive adaptation into any large control and monitoring systems.

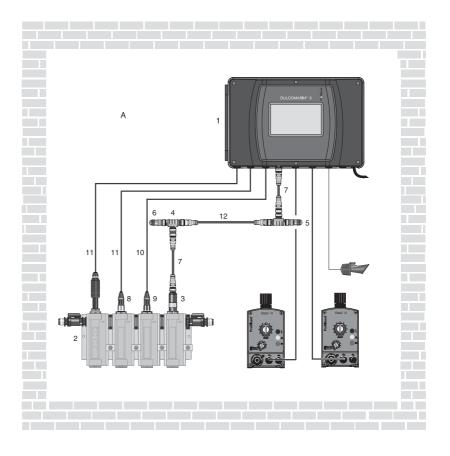
ProMinent supplies an OPC server/driver, such as this, for the multi-channel measuring and control system DULCOMARIN® 3.

The examples shown in the following are suitable for applications in potable water treatment and in swimming pool technology.

Compliance of all units with CANopen specifications:

On the hardware side, all units comply with the harmonised CAN specification 2.0 (ISO99 – 1, ISO99 – 2). This includes the CAN protocol (ISO 11898 – 1) and details on the physical layer in compliance with ISO 11898 – 2 (high speed CAN up to 1 Mbit/sec) and ISO 11898 – 3 (low speed CAN up to 125 kBit/sec). The device complies with the CAN-Open specification CIA-DS401 that forms the basis of the European standard EN50325 – 4. It also complies with the controller device profile CiA-404.

Measuring and Control Technology


2.5 DULCOMARIN® 3 multi-channel multi-parameter measuring and control system for water treatment

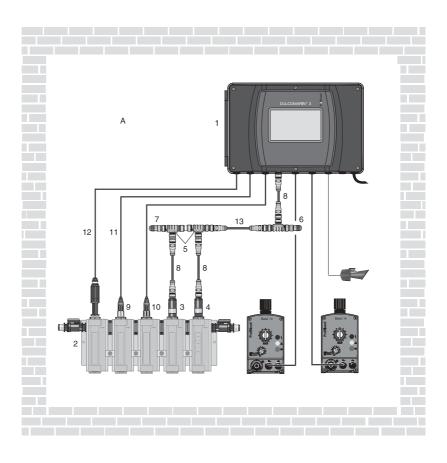
2.5.2 Measuring and control system DULCOMARIN® 3

Configuration example: 1-pool system

The specific example of a measuring and control system for pH, ORP, free chlorine and temperature for a filter circuit consists of the following components (without metering technology):

A Plant room

AP_DC_0013_SW


Item	Quantity	Name	Order no.
1	1	DULCOMARIN® II central unit with measuring and control modules DXCa W 0 0 1 M A P S EN 01	DCPAEUWPMA6L001 XXEN01
2	1	DULCOTEST® in-line probe housing DGMa 3 2 1 T 0 0 0	-
3	1	Chlorine sensor CLE 3-CAN-P-10 ppm	1083209
4	3	T-distributor M12 5 pol. CAN	Included in delivery
5	1	Temination resistance M12 connector	Included in delivery
6	1	Temination resistance M12 plug	Included in delivery
7	3	Connection cable - CAN M12 5 way 0.5 m	Included in delivery
8	1	pH sensor PHES 112 SE	150702
9	1	ORP sensor RHES-Pt-SE	150703
10	2	Cable combination, coaxial, Ø 5 mm 2 m - SN6 - pre- assembled	1024106
11	2 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
12	_	Connecting cable - CAN, sold by the metre	1022160

Example 2

The specific example of a measuring and control system for pH, ORP, free and combined chlorine and temperature for a filter circuit consists of the following components (without metering technology):

A Plant room

AP_DC_0012_SW

Item	Quantity	Name	Order no.
1	1	DULCOMARIN® II central unit with measurement and actuation modules DXCa W 0 0 1 M A P S EN 01	DCPAEUWPMA6L001 XXEN01
2	1	DULCOTEST [®] in-line probe housing DGMa 3 2 2 T 0 0 0	-
3	1	Chlorine sensor CTE 1-CAN-P-10 ppm	1083210
4	1	Chlorine sensor CBR 1-CAN-P-10ppm	1083135
5	3	T-distributors M12 5 pole CAN	Included in delivery
6	1	Load resistor M12-coupler	Included in delivery
7	1	Load resistor M12-plug	Included in delivery
8	3	Connecting cable - CAN M12 5 pole 0.5 m	Included in delivery
9	1	pH sensor PHES 112 SE	150702
10	1	ORP sensor RHES-Pt-SE	150703
11	2	Cable combination, coaxial, Ø 5 mm 2 m - SN6 - preassembled	1024106
12	2 m	Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122
13	1	CAN Connection cable	As required

2.5.3

Identity code ordering system for DULCOMARIN® 3

DULCOMARIN® 3

ОГа	•		desig		٠٨)									
	EU			andar	u)									
			nting	type -mour	ting									
		VV			ııııg									
			Desi		line =+									
			PM		/linent									
				Fun	ction	out	multimaster							
				١			multimaster							
						licatio		DINI®	0					
					A E		rfectio		3, swi	mmınç	g pooi			
					-				roller					
						Sup 4	ply vo 24 V							
						6			V, 50-6	s∩ ⊔-				
						0			cation					
							X	Inone						
							Ĺ			eh int	erface	(nlea	se ord	ler LAN cable separately)
							w		N with			**	00 01 0	or Enviously
							v						erface	(please order LAN cable separately)
							1		ule si			J		(F
								0	No m					
							1	1				emper	ature ((inputs pH/ORP)
							1	2						mA sensor)
							1	3					٠.	1 x mA input (pH/ORP, mA sensor)
							1	4						sured value/control)
								5	Modu	ıle 2 x	cond	uctivit	y/temp	perature (conductive)
pera	ting l	nstru	ctions	•						ule sle				·
ĊΧ	None								0	No m	odule)		
ÞΕ	Germ	an							1	Modu	ıle 2 x	mV/te	emper	ature (inputs pH/ORP)
ΕN	Engli	sh							2	Modu	ıle 2 x	mA ir	nputs (inputs mA sensor)
R	Frenc	ch							3	Modu	ıle 1 x	mV/te	emper	ature 1 x mA input (pH/ORP, mA sensor)
S	Span								4					(measured value/control)
Τ	Italia								5				uctivity	y/temperature (conductive)
3G	Bulga										ule sl			
CN	Chine									0		nodule		
Z	Czec									1				emperature (inputs pH/ORP)
K	Danis									2				nputs (inputs mA sensor)
E I	Estor									3				emperature 1 x mA input (pH/ORP, mA sensor)
i R										4 5				utputs (measured value/control)
arı HU	Gree									5				uctivity/temperature (conductive)
10 E	Hung Irish	anan									0		n ieve nodule	I 4 / module slot 4
P	Japa	nese									1	_		mV/temperature (inputs pH/ORP)
(R	Korea										2			mA inputs (inputs mA sensor)
т.	Lithu										3			mV/temperature 1 x mA input (pH/ORP, mA sensor)
.V	Latvia										4			mA outputs (measured value/control)
ИT	Malte										5			conductivity/temperature (conductive)
JL	Dutch						1				1			packages
L.	Polisi						1						None	•
rT	Portu		Э									01		tandard with web, VNC, SMS, email, data logger, etc.
RO	Roma	_										02	P1 +	
SE.	Swed						1					04	P1 +	
SK	Slova											06		OPC + KNX
SL	Slove	nian											Sma	rt Control
RU	Russ	ian					1							None
Ή	Thai						1						01	ProMinent Cloud
R	Turki	sh					1						02	Diagnosis assistant
Z	Flem	sh											03	Adaptive control
	Appr	ovals	;	1			1						04	Metering monitoring (weather-dependent)
	01	-		1			1						05	Cloud + diagnosis + adaptive control + metering monitoring
					1	1	1			1				
													1	

2.5.4 Chlorine sensors for DULCOMARIN® II and 3

The technical data for the sensors can be found in the chapters indicated.

Sensor type	Measured variable	Determining combined chlorine	Compatible with contamination	Compatible with chlorine electrolysis	Chapter
CLE 3-CAN-P-10 ppm (order no.: 1083209)	Free chlorine	No	Limited suitability	Yes	1.3.3
CBR 1-CAN-P-10 ppm (order no.: 1083135)	Free chlorine	Yes, with CTE 1-CAN-P-10 ppm, order no. 1083210	Suitable for higher loads, surfactants	No	1.3.3
CLO 1-CAN-P-10 ppm (order no.: 1083134)	Free chlorine	No	Tolerant against biofilm formation with hydrodynamic cleaning	Yes	1.3.3
CTE 1-CAN-P-10 ppm (order no.: 1083210)	Total chlorine	Yes, with CBR 1-CAN-P- 10 ppm, order no. 1083135	Suitable for higher loads, surfactants	No	1.3.5
CGE 3-CAN-P-10 ppm (order no. 1083211)	Total available chlorine	No	Suitable for higher loads, surfactants	Yes	1.3.4

Measuring and Control Technology

2.6 Controller AEGIS II

2.6.1 Controller AEGIS II

Treatment of cooling water in evaporation cooling systems - VDI 2047-compliant

Controller AEGIS II continuously measures and controls the conductivity and biocide concentration to keep pipework and heat exchangers clean.

The AEGIS II records all the necessary measuring parameters for cooling water treatment and controls the functions necessary for smooth operation:

- Measures the electrolytic conductivity controls bleeding
- Biocide metering time-dependent or as measurement and control, VDI 2047-compliant (e.g chlorine)
- Corrosion measurement determines whether enough corrosion inhibitor is being metered
- pH measurement measures and controls the pH value

Your benefits

- Biocide metering is timer-controlled
- The online measurement and control of the biocide concentration can be continuous if required
- Serial web interface for unit configuration and remote maintenance. WLAN/WiFi as an option
- Bleed lock: blocks bleeding after biocide metering has taken place
- Forced bleeding: performs bleeding before biocide metering
- Operating status displayed by 10 status LEDs

Technical Details

- 8 digital inputs for contact water meter, flow detector and control signals
- 10 status LEDs display the operating status
- 9 flexible relay outputs: for setpoint-dependent flow volume-proportional or time-based control of actuators
- Measured variables: conductivity, pH, ORP, chlorine, bromine, chlorine dioxide and more

Field of application

- Control of bleeding in evaporation cooling systems
- Volume-proportional control or regulation of the metering of corrosion inhibitors, de-foamers and
- Measurement and control of the inhibitor concentration through the use of a fluorescence sensor
- pH measurement and optional pH control
- Metering of up to 2 biocides based on time or measured values

Technical Data

Measuring range Connection type mV:

pH: 0.00 ... 14.00

ORP voltage: - 1,500 ... + 1,500 mV

Connector type mA (amperometric measured variables,

measuring ranges according to the sensors):

Chlorine

Chlorine dioxide **Bromine** Temperature:

via Pt 100/Pt 1000, measuring range 0 ... 150 °C

Resolution pH: 0.01 ORP voltage: 1 mV

Temperature: 0.1 °C

Amperometric analysis (chlorine etc.): 0.001/0.01 ppm, 0.01 Vol.%, 0.1

Vol.%

Inputs and outputs 3 plug-in module positions: Plug-in modules for 2-channel modules:

mA outputs, pH/ORP inputs, mA inputs for amperometric sensors and

serial sensor inputs 1 input for flow signal

5 output relays acting as changeover contacts, of which 3 are potential-

free and 2 are AC/DC 4 pulse frequency outputs

2 serial sensor inputs for CFTS sensors

8 digital status inputs

Accuracy 0.3 % based on the full-scale reading Measurement input pH/ORP (input resistance > $0.5 \times 1012 \Omega$)

P_AE_0002_SW1

Measuring and Control Technology

2.6 Controller AEGIS II

Temperature compensation Pt 100/Pt 1000 for pH

Temperature correction

0 ... 100 °C

range

Control characteristic P/PID control

Electrical connection 90 - 253 V, 50/60 Hz, 25 VA, 24 V DC

Field bus connection Modbus RTU, additional field buses via gateway

Ambient temperature 0 ... 50 °C (for use indoors or with a protective enclosure)

Enclosure rating Wall-mounted: IP 65

Tests and approvals CE, MET (corresponding to UL as per IEC 61010)

Housing material PPE with flame-proof finish
Dimensions H x W x D 220 x 250 x 122 mm

Climate Permissible relative humidity: 95 %, non-condensing DIN IEC 60068 –

2-30

2.6 Controller AEGIS II

2.6.2 Identity code ordering system for AEGIS II cooling tower control

AGIB	Region	nal cod	е															
	US	USA																
	EU	Europe	е															
		Desig																
		00		ProMinent logo														
				rating voltage 100 – 240 V, 50/60 Hz														
			6															
				LO														
				LB														
				wo		N+WLAN												
				BW		- WLAN		ooth										
				L1	LAN v	vithout N	/12 LAI	N cable										
				LC					LAN cal	ble								
				W1		- WiFi w												
				WC					out M12	LAN cal	oie							
						cation p												
					T1		ooling t I senso											
						00	none	I A										
						CT		sensor	for cool	ing towe	r							
								l senso										
							00	none										
							CT			for cooli								
										ot 1 (In	out C/D)							
								XX L3	none	uctivity te	amnorot	ura con	or inn	ıt				
								AA		A senso		ure sens	ou iiipt	at.				
								H1		A output								
								D1		sensor r								
										sion slo	ot 2 (Inp	ut E/F)						
									XX	none								
									L3		ctivity te		ure sen	sor inpu	ıt			
									AA V2		A senso	•	oncor!-	nout				
									H1		√tempe Aoutput		ELIPOL IL	iput				
									D1		serial sensor module							
									V1		nperatu		module	е				
											sion slo							
										XX	none							
	nentatio		uage							L3		-		ture sen	sor inpu	ut		
DE	deuts									AA V2		sensor		onoc- !-	nnu+			
EN ES	English Spanis									V2 H1		tempe Loutput		ensor ir	ipul			
FR	French									D1				monitori	ina			
BG	Bulgari									V1				\ module				
CS	Czech											activati						
DA	Danish										0	Relay v	with free	e adjust				
ET	Estonia	an									P			/230 V),		R1+R2)		
EL	Greek										٧			cy (P6 t	'.			
FI HR	Croatia										Х			ot option				
HU	Hunga											O Pre-Wi		ay outpor use o		urone		
IT	Italian											_	_	ired ou				
JA	Japane	ese											0			utside E	urope	
KO	Korear													Inhibi	tor met	ering o	utputs	
LT	Lithuar													0		with free	e adjus	tment
LV	Latvian	1												1	one			
NL PL	Dutch Polish													2	two	da w	wlm	
PT	Polish	HESE													Biocio 0	l Relay		utputs ee adjustment
RO	Roman														1	one	wiu i ii e	o aajusiin e nt
SK	Slovak														2	two		
SR	Serbia														3	three		
SL	Sloven															Hardy	vare ex	rtension
SV	Swedis															0	none	
RU	Russia	n																ovals
TH	Thai	_															01	CE
LTD		1		1	1			1		1			1	1		1	07	MET (USA)
TR ZH	Turkish Chines																08	CE + MET (Europe)

2.6 Controller AEGIS II

Retrofit modules for controller AEGIS II for subsequent extension of functions

	Order no.
Module 2x mA output	734143
Module 2x MA input	734126
Module 2x mV/temp input	734131
Module 2x serial sensor	734265
Module 2x cond/temperature	734223
Module: mV/temp mA input	734355

DULCOTEST® sensor for conductivity, type CTFS

Multi-parameter sensor for electrolytic conductivity, temperature and flow control for use in cooling water treatment. Installation in bypass fitting DGMa and in DN 20 pipework. For operation on AEGIS® II cooling tower controller

Your benefits

- 3 measured variables in one sensor: electrolytic conductivity, temperature and flow control
- Auto-ranging within the measuring range for electrolytic conductivity 100...10,000 μS/cm

Measuring range 0.1...10 mS/cm Cell constant k 10.00 cm⁻¹ ±5%

Temperature measurement Semiconductor temperature sensor

Medium temperature 0 ... 50 °C

7.0 bar up to 35 °C, (at 25 °C) Max. pressure

Sensors Graphite, epoxy

PP Shaft material Seals **FKM**

Thread see Installation Fitting length see Installation

Installation Einbau ohne beiliegenden drehbaren Adapter: in DGMa, Modul 25 mm: Adapter CTFS/DGMA M25-NPT 3/4" PVDF, Best. Nr. 1080293.,

Einbau mit beiliegendem drehbaren Adapter in PVC-Leitungen: T-

Stück, DN 20/d25, 3/4", Best. Nr. 356455.

Electrical connection 3 m fixed cable, extendible to 50 m, with cable type: 0.5 mm² or AWG

22.

IP 65 **Enclosure rating**

Typical applications Cooling water

Resistance to Ingredients in the water of the target application, taking into account the

compatibility of the material

Measuring and control Measuring principle,

equipment

technology

AEGIS® II cooling tower controller

Conductive. Integrated temperature measurement and thermal flow

detector

	Order no.
CTFS sensor conductivity/temperature/flow complete	1081727

Please observe the general notes on p. → 1-89 (Overview Table for Conductivity Sensors)

2.7 Controller with Integral Metering Pump

Controller with Integral Metering Pump

You can find the Solenoid-Driven Metering Pump delta® with controller module in Volume 1

2.7.1

2.8 DULCOMETER® Transmitters

2.8.1

Transmitter DULCOMETER® DMTa

The compact 2-wire transmitter - the link to the PLC and DULCOMETER®.

The transmitter DULCOMETER® DMTa converts the sensor signals for pH, ORP value, chlorine concentration and conductivity into an interference-insensitive 4-20 mA analogue signal. Flexible, safe and always the optimum resolution of measured value.

2600 PS/

30,0

pk_5_001

The 2-wire transmitter DMTa converts the following sensor signals into an interference-insensitive 4-20 mA analogue signal: pH, ORP, temperature, chlorine and conductivity.

It is fed via the 2-wire analogue input of a PLC or via a 2-wire analogue input of a ProMinent controller. The 4-20 mA analogue current proportional to the measured value is transmitted via the same two lines.

The DMTa offers an on-site calibration option of the sensor and galvanic separation between the sensor input and measured value output.

Your benefits

- Flexibility in the choice of measured variable with pH, ORP and temperature
- Excellent operational safety, thanks to sensor monitoring (pH)
- Galvanic isolation between the sensor and supply
- Always the optimum measured value resolution by auto-ranging with conductivity measurement
- Safety through sensor monitoring of pH for glass breakage and line breakage
- Various installation options: wall-mounted, installation on an upright or in a control cabinet

Technical Details

- Measured variables: pH, ORP, chlorine, temperature and conductivity
- Accuracy: 0.5% of the upper range value
- Correction variable: Temperature via Pt 100/Pt 1000 (pH, chlorine, conductivity)
- Communication interface: PROFIBUS®-DP (wall-mounted only)
- Protection class: IP 65 (wall-mounted, pipe installation), IP 54 (installation in a control cabinet)
- Display: Graphic display

Field of application

Measuring technology in water treatment in the following sectors:

- Processes and process technology
- Food and beverage industry
- Chemical industry
- Pharmaceuticals
- Waste water treatment
- Power station technology

Technical Data

Measuring range pH - 1.00 ... 15.00

- 1200 ... +1200 mV ORP voltage 0.01 ... 50.0 mg/l chlorine

-20 ... +150 °C

1 $\mu\text{S/cm}$... 200 mS/cm (autoranging), corresponding to cell constant

Cell constant 0.006 ... 12.0/cm for conductivity

Resolution 0.01 pH 1 mV

0.1% from measurement range for chlorine

0.1 °C

Conductivity 1/1000 of display value (min. 0.001 μ S/cm)

Accuracy 0.5% from measurement range

Measurement input mV terminal (pH, ORP); imput resistance > $5 \times 10^{11} \Omega$

Chlorine terminal (DMT chlorine sensors)

Pt 100/1000 terminal

Conductivity terminal (2 or 4 wire connector)

Correction variableTemperature via Pt 100/1000 (pH, chlorine, conductivity)Correction rangeChlorine: 5 ... 45 °C, pH: 0 ... 100 °C, conductivity: 0 ... 100 °C

Current output4...20 mAFault current23 mA

DULCOMETER® Transmitters

Feed voltage 2-wire transmitter, 16 ... 35 V DC, nominal 24 V

PROFIBUS®-DP version, 16 ... 30 V DC, nominal 24 V

Communication interface PROFIBUS®-DP (wall-mounted version only)

Permissible ambient 0...55 °C

temperature

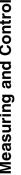
Climate Relative humidity up to 95% (non-condensing)

Enclosure rating IP 65 (wall/pipe mounted)

IP 54 (control panel installation)

Display graphical display

Housing material PPE


Dimensions H x W x D 135 x 125 x 75 mm

Weight 0.45 kg

A complete measuring station comprises the following:

- DMTa measuring transducer (see Identity code)
- In-line probe fitting: DGMa..., DLG III ..., immersible in-line probe fitting
- Chlorine sensor (dependent on Identity code)
- Assembly set for chlorine sensor
- pH sensor (dependent on Identity code)
- ORP sensor (dependent on Identity code)
- Temperature sensor Pt 100 /Pt 1000 (dependent on Identity code)
- Conductivity sensor
- Sensor cable
- PROFIBUS® DP connection accessories

(for further information: Immersion Fittings see page → 1-128; Sensors for Chlorine see page → 1-49; pH Sensors with SN6 or Vario Pin Plug-In Head see page → 1-10; ORP Sensors with Fixed Cable see page ightarrow 1-43; DULCOTEST® Temperature Sensors see page ightarrow 1-46; Conductivity Sensors see page → 1-88; Sensor Accessories see page → 1-119; Metering Monitor, Signal Cable see volume 1 page)

2

2.8 DULCOMETER® Transmitters

2.8.2

Identity Code Ordering System for Transmitter DMTa

DULCOMETER® Transmitters

DMT	Series	5											
	Α	Version											
		Installation											
		W		ounted	(also pil	lar mou	nted)						
		S	Contro	l panel	installati	on¹							
			Version										
			0	With P	roMiner	nt® logo							
					r supply								
				9						ology), o	perating	g voltage	e 1640 V DC, nominal 24 V DC
				5			inication			30 \/ 1	C nor	ninal 24	V DC (only if communication interface = PROFIBUS® DP)
				٦			on inter	•	nage 10	00 V I	50, 1101	11111a1 Z-7	V DO (Only il communication interface = 1 Flori iboo Di)
					0	INone	on mile	iaces					
					4		IBUS® D	P (asse	mbly ty	oe W on	lv)		
							red var	٠,	- , ,,		,,		
						Р	pH						
						R	ORP						
						Т	Tempe						
						С	Chlorin						
						L	Condu	,					
							Measu 1 0					riable)	
										Pt 1000/F		d variabl	- T)
							U		sure rat		easure	ı vanabı	e i)
								0	Standa				
									Langu				
									D	germai	า		
									E	english	1		
									F	french			
									S	spanis	h		
									I	italian			
										Preset			
										0			finent® buffer solution pH 7 and 4
										D V			fer DIN 19266 pH 7 and 4 recognition
										V		tting B.	•
											0		. temperature measurement (standard)
											1		Il temperature measurement
											2		./manual temperature measurement
											9		perature measurement
													tting C, output
												0	Proportional measured variable (Standard)
												1	Manual adjustable current value
												2	Proportional or manual
												3	Proportional or manual hold
												4	4 mA constant current

The last four figures in the identity code represent the software defaults, e.g. cell constants for conductivity, temperature compensation, etc.

0 = standard parameters

The measuring transducer can be factory-set. The defaults can be easily changed in the operating menu.

Note:

¹ The rear housing part is omitted for control panel mounting.

2.8 DULCOMETER® Transmitters

2.8.3 Application Example: Measurement of Free Chlorine with Connection to a PLC

Tasks and applications

In the treatment of drinking water in a water works with a PLC as the higher-order control system, simple measuring stations are needed to measure the disinfectant "free chlorine" at the outlet of the water works and thereafter to monitor protection of the network in the distribution system. Metering is proportional to the flow and is controlled by the PLC. The following conditions must be met:

- Disinfectant: free chlorine with an adjustable concentration of 0.1 ppm
- Raw water: groundwater with a pH of 7.5 and a temperature of 8-13 °C
- Installation of the measuring station in the bypass of the process flow
- Display of the measurement result and calibration by a measuring instrument in the proximity of the bypass installation and transmission of the measured value to the PLC via an electrically isolated 4-20 mA signal
- Power supply to the measuring instrument via the PLC (two wire instrument)

Components of the measuring/control station

Quantity	Name	See page	Order no.
1	Transmitter DMTa	→ 2-86	DMTa W090C00D000
1	Sensor for free chlorine CLE 3-DMT-5 ppm	→ 1-53	1005511
1	Universal cable, 5-pin round plug	→ 1-120	1001300
1	Bypass fitting DGMA	→ 1-126	DGMa 101T000

Benefits

- Simple, compact and cost-effective measuring station close to the bypass installation
- Electrical installation cost-savings due to power supply over a two wire system
- No need for electrical isolation of the output signal by electrical isolation integral to the DMT

DULCOMETER® Transmitters 2.8

2.8.4

Transmitter DULCOMETER® DULCOPAC

The compact transmitter for installation in control cabinets.

The transmitter DULCOMETER® DULCOPAC is a complete PID controller for the key measuring parameters in water treatment. It can be installed on a top hat rail inside a control cabinet.

The DULCOPAC transmitter in a DIN housing is intended for installation on a top hat rail (in a control cabinet). It measures and regulates the measured variables in aqueous solutions: pH, ORP, chlorine and conductivity

With the measured variables pH and ORP, it is possible to select between a DULCOPAC transmitter with a highly-ohmic coaxial input (direct connection of a pH/ORP sensor) or a 4-20 mA two-wire input. A transmitter is also needed when connecting pH or ORP via 4-20 mA (part no. 809126 for pH and part no. 809127 for ORP).

Two analogue outputs (0/4...20 mA) are available for recording purposes and two potential-free low voltage relays with a changeover contact for control of metering pumps. The analogue outputs are galvanically isolated. The DULCOPAC is operated and configured using buttons and the integrated LC display via

The power supply is provided via a special DULCOPAC power supply and can feed up to 10 DULCOPAC units. It provides the requisite galvanic isolation to the mains power supply.

Your benefits

- × Space-saving: Direct installation in a control cabinet
- Safe measuring technology: galvanic isolation between the sensor and power supply

Technical Details

- Measured variables: pH, ORP, chlorine, conductivity and temperature
- Correction variable: Temperature for pH and conductivity via Pt 100
- Control action: P/PID control
- Control: Bidirectional control
- Signal current output: 2 x 0/4-20 mA galvanically isolated
- Degree of protection: IP 20

Field of application

- Measurement and control of water parameters in industrial and process water treatment plants
- Processes and process technology
- Electroplating
- Waste water treatment

Technical Data

pH: 2.00 ... 14 Measuring range

ORP: -1,500 ... +1,500 mV

Chlorine: 2 ppm to 100 ppm in 6 ranges

Conductivity: 2 electrodes 100 µS/cm-10 mS/cm, k=0.1 to 10 cm⁻¹

Temperature

Correction variable Temperature for pH and conductivity via Pt 100

Correction range 0 ... 100 °C P/PID control Control characteristic Control 2-sided control

Signal current output 2 x 0/4-20 mA electrically isolated, range and assignment

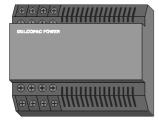
(measured or actuating variable) can be set

Control outputs 2 extra low voltage relays, 48 V with 1 A as a control output with pulse

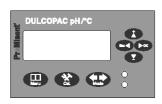
width modulation or limit value output

Electrical connection 24V DC, 3W, via DULCOPAC power supply unit

Permissible ambient temperature -10...50 °C


Dimensions 60 x 90 x 55 mm (H x W x D)

Enclosure rating IP 20 Weight 0.3 kg


Order no. DULCOPAC pH (mV) 1036425 DULCOPAC ORP/redox (mV) 1036427 **DULCOPAC Chlorine** 1036429 **DULCOPAC Conductivity (direct)** 1036431 DULCOPAC power supply unit, 230 V AC - 24 V DC 1036436

P_DM_0023_SW

P_DM_0021_SW

P_DM_0022_SW

Measuring and Control Technology

2.8 DULCOMETER® Transmitters

2.8.5 Application Examples for DULCOPAC

This chapter describes typical combinations of components for measuring stations with DULCOPAC transducers.

Measurement of pH with connection to a PLC

Tasks and applications

The pH value is to be measured in the bypass of a process water pipe, temperature 35 °C, pressure 3 bar, no solid matter content The transducer is located in a control cabinet and the converted measuring signal is transmitted to a PLC as an analogue signal.

Components of the measuring/control station

Quantity	Name	See page	Order no.
1	DULCOPAC pH (mV)	→ 2-90	1036425
1	DULCOPAC power supply unit, 230 V AC - 24 V DC	→ 2-90	1036436
2 m	Coaxial cable, Ø 5 mm, 10.0 m	→ 1-119	305040
1	pH sensor PHEP 112 SE	→ 1-13	150041
1	Bypass fitting DGMA with sample water limit contact	→ 1-126	DGMa310T000

Measurement of free chlorine with connection to a PLC

Tasks and applications

The concentration of chlorine is to be measured in the bypass of a process water pipe. Chlorine concentration approx. 0.6 ppm, water temperature approx. 35 °C, total pressure approx. 1 bar, no solid matter. The transducer is located in a control cabinet and the converted measuring signal is transmitted to a PLC as an analogue signal.

Components of the measuring/control station

1 DULCOPAC Chlorine → 2-90 1036429	
1 200 1000420	
1 DULCOPAC power supply unit, 230 V AC - 24 V DC → 2-90 1036436	
2 m Two-wire measuring line 2 x $0.25 \text{ mm}^2 \varnothing 4 \text{ mm} \rightarrow 1-121$ 725122	
1 Chlorine sensor CLE 3-mA-2 ppm → 1-51 792920	
1 Bypass fitting DGMA → 1-126 DGMa 301T000	

Measurement of conductive conductivity with connection to a PLC

Tasks and applications

The electrolytic conductivity is to be measured in the bypass of a process water pipe. Conductivity approx. 7500 μ S/cm, water temperature approx. 35 °C, total pressure approx. 1 bar, no solid matter. The transducer is located in a control cabinet and the converted measuring signal is transmitted to a PLC as an analogue signal.

Components of the measuring/control station

Quantity	Name	See page	Order no.
1	DULCOPAC Conductivity (direct)	→ 2-90	1036431
1	DULCOPAC power supply unit, 230 V AC - 24 V DC	→ 2-90	1036436
1	Measuring line type LKT for conductivity sensors Ø 6.2 mm	→ 1-120	1046024
1	Conductivity LFT 1 DE	→ 1-100	1001376
1	Bypass fitting DGMA with sample water limit contact	→ 1-126	DGMa310T000

2.9.1

Portable Meter Portamess® - Measured Variable pH/ORP

Robust manual measuring instrument to withstand the most severe mechanical and chemical loading.

Measuring range pH -2.00 to + 16.00, ORP -1,300 ... +1,300 mV

1

pH and ORP measurement with Portamess® pH/ORP - battery-powered, hand-held meter with automatic or manual temperature compensation.

The Portamess® pH/ORP is used to measure the pH and ORP value in the industrial, environmental, food and waste water sectors. The unit complies with the requirements of the EMC Act and the NAMUR NE 21 recommendations. Calibration can be done with buffer solutions made of different, pre-selectable buffer sets.

Your benefits

- Robust and protected against ingress (IP 66 protection)
- Long lifespan: Over 2,000 h operating time with only 3 x AA batteries
- Always in sight: Large LC display
- Hard-wearing membrane keypad
- Integrated sensor quiver to protect the sensor
- Robust, watertight, gold-plated sockets

Technical Details

- Measuring ranges pH: -2.00 ... +16.00, ORP: -1,300 ... +1,300 mV
- Measuring errors pH: < 0.01, ORP: < 0.1% of the measured value ±0.3 mV
- Sensor adaptation: 8 buffer sets to choose from
- Temperature compensation: manual
- Protection class: IP 66
- Operating time: 2,000 hours with 3 x AA cells
- **Dimensions:** H x W x D 160 x 133 x 30
- Weight: 560 g with batteries
- Scope of delivery: Measuring instrument, field case, operating instructions in German, English and French.

Field of application

- Industry
- Environmental protection
- Food production
- Water or waste water inspection

	Order no.
Portamess® 911 pH	1008710

Accessories

	Capacity	Order no.
	ml	
PHEKT-014F	-	1036537
Coaxial cable Ø 5 mm, 0.8 m - SD*	-	305098
Buffer pH 7.0	50	506253
Buffer pH 4.0	50	506251

* Fitting for all ProMinent® pH sensors with SN6 connection

Sensor quiver see p. → 2-98

2.9.2

Portable Meter Portamess® – Measured Variable Conductivity

Robust measuring instrument to withstand the most severe mechanical and chemical loading. Measuring range 0.01 μ S/cm – 1,000 mS/cm

The measuring instrument Portamess® conductivity is a robust, leak-tight and battery-operated handheld measuring instrument with a large measuring range and automatic or manual temperature compensation, which can be used in the industrial, environmental, food and waste water sectors.

pk_5_098

The Portamess® conductivity is used to measure conductivity and temperature in the industrial, environmental, food and waste water sectors. The unit complies with the requirements of the EMC Act and the NAMUR NE 21 recommendations. Calibration can be done with buffer solutions made of different, preselectable buffer sets.

Your benefits

- Robust and protected against ingress
- Long lifespan: Over 1,000 h operating time with only 3 x AA batteries
- Always in sight: Large LC display

Technical Details

Measuring ranges:

- Conductivity instrument: 0.01 μS/cm ... 1,000 mS/cm, with sensor LF204: 1 μS/cm ... 500 mS/cm
- Temperature: -20 ... 120 °C
- Salinity: 0.0 ... 45.0 g/kg (0 ... 30 °C)
- TDS: 0 ... 1,999 mg/l (10 ... 40 °C)

Measuring error:

- Conductivity < 0.5% of the measured value (with conductivities of > 500 mS/cm < 1% of the measured value) ±1 digit</p>
- Temperature < 0.3 K ±1 digit

Sensor adaptation:

 Direct input of the cell constants, automatic establishment of the cell constants with KCI solution 0.01 or 0.1 mol/l, cell adaptation with any known solutions

Cell constant k:

■ 0.010 ... 199.9 cm-1 (adjustable)

Temperature compensation:

■ Configurable, manual or measured

Protection class:

■ IP 66

Operating time:

■ Approx. 1,000 hours with 3 x AA cells

Dimensions:

■ 160 x 133 x 30 mm (H x W x D)

Weight:

■ 560 g with batteries

Scope of delivery:

Measuring instrument, field case, conductivity sensor LF 204, operating instructions in German, English and French

Field of application

- Industry
- Environmental protection
- Food production
- Water or waste water inspection

Order no.

Portamess® 911 Cond 1008713

Note:

The scope of delivery does include the conductivity sensor LF 204.

Conductivity sensor LF 204 see p. \rightarrow 2-98, Sensor quiver see p. \rightarrow 2-98

2.9.3

Photometer

Precise measurement results through high-quality interference filters

Photometers measure nearly all disinfectants and the pH value based on the photometric principle. They are portable, compact and make safe, simple measurement possible.

P_DT_0074_SW Photometer

The Photometers DT1B, DT2C, DT3B and DT4B are used, among other things, as a reference method for calibrating the electrochemical sensors for chlorine, chlorine dioxide, fluoride, chlorite, H_2O_2 , bromine and ozone. They have been adapted to today's requirements and can be used in almost all areas of water analysis. High-quality interference filters and long-term stable LEDs are used as the light source in the high-precision optics. The entire measuring unit is maintenance-free. Precise and reproducible analysis results are achieved with minimum time and effort. The units are winning customers over with their excellent operating convenience, ergonomic design, compact dimensions and ease of use.

Your benefits

- Portable and compact
- Simple to operate with text support
- Safe, simple measurement of chlorine, chlorine dioxide, fluoride, chlorite, H₂O₂, bromine, ozone, pH and trichloroisocyanuric acid
- Can be calibrated
- Memory function for the last measurements
- Backlit display
- Real-time clock
- Countdown
- Watertight, degree of protection IP 68

Technical Details

Measuring ranges of the DT1B:

- 0.05 ... 6.0 mg/l free chlorine (DPD1) + total chlorine (DPD1+3)
- 5 ... 200 mg/l free chlorine (high range)
- 0.1 ... 13.0 mg/l bromine (DPD1)
- 0.05 ... 11 mg/l chlorine dioxide (DPD1)
- 0.03 ... 4.0 mg/l ozone (DPD4)
- 6.5 ... 8.4 pH (phenol red)
- 1 ... 80 mg/l cyanuric acid

Measuring ranges of the DT2C:

- 0.05 ... 2.0 mg/l fluoride
- 0.05... 6.0 mg/l free chlorine and total chlorine
- 0.05 ... 11.0 mg/l chlorine dioxide

Measuring ranges of the DT3B:

1 ... 50 / 40 ... 500 mg/l hydrogen peroxide (H_2O_2)

Measuring ranges of the DT4B:

- 0.03 ... 2.5 mg/l chlorite
- 0.05 ... 11 mg/l chlorine dioxide
- 0.05 ... 6 mg/l chlorine

 $\textbf{Measuring tolerance:} \ \mathsf{Depending} \ \mathsf{on} \ \mathsf{the} \ \mathsf{measured} \ \mathsf{value} \ \mathsf{and} \ \mathsf{measuring} \ \mathsf{method}$

Battery: 4 x AA/LR6 batteries

Permissible ambient temperature range: 5...40 °C Relative humidity: 30 ... 90% (non-condensing)

Protection class: IP 68
Housing material: ABS
Keypad: Polycarbonate film

Dimensions: 190 x 110 x 55 mm (L x W x H)

Weight: 0.4 kg

Field of application

- Swimming pools
- Potable water
- Process water

	Order no.
Photometer DT1B	1039315
Photometer DT3B hydrogen peroxide	1039317
Photometer DT4B	1039318

Photometers supplied with accessories, container vessels and reagents.

Consumable items

	Order no.
DPD1 tablets, 100 pieces *	1061892
DPD3 tablets, 100 pieces **	1061893
Glycine tablets, 20 pieces	1061944
Phenol red tablets 100 pieces	305532
Cyanuric acid tablets, 100 pieces	1039744
SPADNS reagent, 250 ml for fluoride detection	1010381
Calibration standard fluoride 1 mg/l, for calibration of the photometer during fluoride determination	1010382
3 pieces replacement cuvettes; round cuvettes with lid for DPD, phenol red and cyanuric acid detection (DT1, DT1B, DT4, DT4B, DT2B, DT2C)	1007566
3 pieces replacement cuvettes for fluoride detection (DT2B and DT2C)	1010396
Chlorine dioxide tablets No. 1, 250 no.	1039732
Chlorine dioxide tablets No. 2, 250 no.	1039733
Chlorine HR tablets, 100 pieces	1075056
Acidifying tablets, 100 pieces	1075057

 $^{^{\}star}$ replaces DPD1 buffer, 15 ml (1002857) and DPD1 reagent, 15 ml (1002858)

Spare parts

Chlorite measurement

	Order no.
Stirrer for purging of chlorine dioxide (DT4)	1022754
3 pieces replacement cuvettes; round cuvettes with lid for DPD, phenol red	1007566
and cyanuric acid detection (DT1, DT1B, DT4, DT4B, DT2B, DT2C)	

H₂O₂ measurement

		Order no.
Reagent for H ₂ O ₂ (DT3), 15 ml		1023636
Replacement cuvettes, 5 pieces	s, for H ₂ O ₂ (DT3)	1024072

^{**} replaces DPD3 solution, 15 ml (1002859)

2.10 Accessories for Measuring and Control Devices

2.10.1

Transmitter 4 ... 20 mA (Two-Wire System)

Benefits:

4

Ø 25

pk_5_064

- Reliable signal transmission, even over large distances
- Interference-resistant 4 ... 20 mA signal
- Simple installation directly on the sensor

Typical applications:

Transmission of the measuring signal even over long distances and/or transmission of interference-resistant measured signals (e.g. pH, ORP) in conjunction with controllers type D1C, D2C and DULCOMARIN® or direct connection to PCs and/or a PLC. If using a PLC, it has to have an electrically isolated input.

pH measuring transducer 4 ... 20 mA type pH V1

Measuring range pH 0 ... 14

Measuring error $< 0.1 \text{ pH (typical } \pm 0.07 \text{ pH)}$

Socket SN6

Input resistance $> 5 \times 10^{11} \Omega$

Signal current output $4 \dots 20 \text{ mA} \approx -500 \dots +500 \text{ mV} \approx \text{pH } 15.45 \dots -1.45 \text{ not calibrated, not}$

electrically isolated

Power supply DC 18...24 V DC

Ambient temperature -5...50 °C, non-condensing

Enclosure rating IP 65

Dimensions 141 mm (length), 25 mm (\varnothing)

Order no.

pH measuring transducer 4 ... 20 mA type pH V1

809126

ORP measuring transducer 4 ... 20 mA type RH V1

Measuring range 0 ... 1000 mV

 $\begin{tabular}{ll} \textbf{Measuring error} & < \pm 5 \ mV \ (typical \ \pm 3 \ mV) \end{tabular}$

Socket SN6 Input resistance $> 5 \times 10^{11} \Omega$

Signal current output $4 \dots 20 \text{ mA} \approx 0 \dots +1000 \text{ mV}$ not electrically isolated

Power supply DC 18...24 V DC

Ambient temperature -5...50 °C, non-condensing

Enclosure rating IP 65

Dimensions 141 mm (length), 25 mm (Ø)

Order no.

ORP measuring transducer 4 ... 20 mA type RH V1 809127

Temperature measuring transducer 4 ... 20 mA type Pt100 V1

Measuring range 0 ... 100 °C

Measuring error $< \pm 0.5 \,^{\circ}\text{C} \text{ (typical } \pm 0.3 \,^{\circ}\text{C)}$

 $\begin{array}{ll} \text{Socket} & \text{SN6} \\ \text{Input resistance} & \sim 0 \ \Omega \\ \end{array}$

Signal current output $4 \dots 20 \text{ mA} \approx 0 \dots +100 \,^{\circ}\text{C}$ not electrically isolated

Power supply DC 18...24 V DC

Ambient temperature -5...50 °C, non-condensing

Enclosure rating IP 65

Dimensions 141 mm (length), 25 mm (\emptyset)

Order no.

Temperature measuring transducer 4 ... 20 mA type Pt 100 V1 809128

2-96 Product Catalogue 2018 1.1.2018

2.10 Accessories for Measuring and Control Devices

PEROX transducer

The microprocessor-based PEROX transducer is used to control and activate the PEROX sensor and to evaluate the sensor signal. It is screwed directly on to the sensor head. The H_2O_2 transducer can be directly connected to the D1C controller via a 3-core signal cable.

The PEROX transducer is approx. 205 mm long with a diameter of 32 mm.

PEROX transducer for ${\rm H_2O_2}$ measurement

Contains an internal selector switch for the three ranges:

1 ... 20, 10 ... 200 and 100 ... 2,000 mg/l H_2O_2

	Order no.
PEROX transducer V2 for DACa and DACb	1047979

PEROX transducer V1 for D1Ca on request.

Accessory

	Order no.
Two-wire measuring line 2 x 0.25 mm ² Ø 4 mm	725122

2.10 Accessories for Measuring and Control Devices

2.10.2

Accessories for Portable Meters Portamess®

Sensor quiver

5 pieces, for water tight storage of sensors. For Portamess® pH and Cond

Sensor quiverOrder no.1008716

Conductivity sensor LF 204

Number of electrodes

Sensor shaftBlack epoxySensorsGraphiteShaft length120 mmShaft diameter15.3 mmCable length1.5 m

Temperature sensor NTC (30 k Ω) -5 ... 100 °C

Conductivity sensor LF 204 Order no. 1008723

pk_5_093

Panel-Mounted Measuring/Control Stations

3.0 Overview of Ordering System for Measuring and Control Points DULCOTROL® DWCa

ProMinent

3.0.1 Selection Guide

3.0.2

Measuring, control and monitoring tasks in water treatment

DULCOTROL® DWCa_P potable water/F&B

Treatment of potable water, water similar to potable water and treatment of rinsing water, industrial and process water in the food and beverage industry

- Disinfection
- Cleaning In Place (CIP)
- pH adjustment
- Monitoring

DULCOTROL® DWCa_W waste water

Treatment of industrial and municipal waste water

- pH neutralisation
- Disinfection
- Detoxification
- Desalination of process water
- Control of dissolved oxygen
- Monitoring

Description of the Identity Code Specifications in the DULCOTROL® DWCa Ordering System

The measuring and control stations can be configured using the respective identity code ordering system. With the "panel-mounted" version, all the components except the sensors are mounted on a polypropylene panel. In the "assembly kit" version, all components are supplied loose in a package. The DULCOTROL® ordering system works with user-based selection criteria so that you can select the most appropriate measuring and control station, largely without any serious technical understanding. One or two measured variables can be configured in each product range. The identity code specifications are explained in more detail below. The content and scope of delivery contained in the specifications is described in Chapter 3.1.3 (Technical Description of the Scope of Delivery).

Specification: "Application"

The "Application" specification is used to define the application ("potable water", "waste water") in which the measuring and control station is deployed. This defines the types of sensors and fittings.

Specification: "Water to be measured"

This is used to further characterise the sample water (e.g. "clear water" or "turbid water") selected via the main application (e.g. potable water, waste water). The sensor type, measuring range (e.g. CLE 3-mA-2ppm) and fitting (e.g. DGMA) are defined in conjunction with the main application.

Specification: "Measured variable 1" and "Measured variable 2"

They are used to determine the measured variable to be measured or controlled (e.g. pH or chlorine). Up to two measured variables can be simultaneously selected within the scope of the specified options. This defines the sensor class (e.g. pH sensor or chlorine sensor) and the controller suitable for the measured variable and the appropriate measuring cable. We use the diaLog DACa controller for all measured variables except conductivity. We configure the Compact conductivity controller for the measured variable conductivity. The possible combinations of measured variables are listed in the tables in the "Technical Description of the Scope of Delivery" chapter.

Specification: "Measurement and control"

This determines whether only the measuring function or the complete bidirectional control function for the selected measured variable is shown on the controller.

Specification: "Communication interface"

This specification defines whether a PROFIBUS® DP interface is fitted on the controller.

Specification: "Data logger"

This specification defines whether a data logger is contained within the controller.

Specification: "Hardware expansion"

This specification defines whether a protective RC circuit is fitted to protect relays exposed to high loads.

Specification: "Sensor equipment"

This specification determines whether the measuring/control panel is supplied with or without sensors. If "with sensors" is selected, the sensors are also supplied in the original packaging. Select "without sensors" if the types of sensor supplied cannot be used as standard (see chapter 3.1.3: Technical Description of the Scope of Delivery) (for example: Inapplicable measuring range) or if the measuring plates are to be stored.

Panel-Mounted Measuring/Control Stations

3.0 Overview of Ordering System for Measuring and Control Points DULCOTROL® DWCa

Specification: "Design"

This specification defines whether the measuring and control station is to be supplied as a completely assembled panel or an assembly kit and which label the panel is to have.

Specification: "Sample water treatment"

This specification defines whether a filter is fitted (for panel-mounted measuring and control points) or is supplied ready for connection (for assembly kits).

Specification: "Certification"

This specification defines the approvals and certificates.

Specification: "Documentation"

This specification defines the operating language of the controller and the operating instructions.

Measuring and Control Points DULCOTROL® **DWCa P Potable Water/F&B**

Overview of DULCOTROL® DWCa Potable Water/F&B 3.1.1

The compact measuring and control system for the reliable monitoring and treatment of potable and similar types of water.

Monitoring and treatment of potable and similar types of water with DULCOTROL® potable water/F&B the compact measuring and control system specially designed for water treatment in waterworks and in the food and beverage industry.

Measuring and control systems DULCOTROL® for the potable water/F&B application are specially tailored to the potable water sector and the food and beverage industry. In addition, they also meet the particular requirements within these sectors: on the one hand, for potable water/product water treatment and, on the other hand, for the treatment of rinsing water, industrial water and process water. The measuring and control systems can be configured using the relevant identity code ordering system. With the "panelmounted" version, all the components except the sensors are mounted on a polypropylene panel. In the "assembly kit" version, all components are supplied loose in a package. The DULCOTROL® ordering system works with user-based selection criteria so that you can select the most appropriate measuring and control system, largely without technical knowledge. One or two measured variables can be configured in each product range.

Your benefits

- Availability of all key chemical measured parameters for water treatment
- Application-optimised configuration of the components by user-based order criteria
- Configuration of 1 or 2 complete measuring and control points on a plate or as an assembly
- The equipment on the controllers can be selected
- Flexible use by designing the measuring and control point fully assembled or as an assembly
- Flexible adaptation to special applications and measuring ranges by designing the measuring and control points without sensors and ordering the sensor type and measuring range separately
- Ready-to-connect plug-and-play measuring and control points for quick, easy installation and commissioning
- Extensive optional accessories (pressure reducers, filters, heat exchangers, sample water pump)

Technical Details

- Installation in the bypass of the main water line through which the medium flows
- Max. pressure, depending on design: 1 bar/3 bar/6 bar
- Flow, depending on design: 15...40 l/h/ 40...65 l/h/
- Max. feed chemical temperature: primarily up to 45 $^{\circ}$ C, with some versions up to 65 $^{\circ}$ C (max. 2 bar)
- Ambient temperature: + 5...50 °C
- Degree of protection: IP65
- Power supply: 90 240 V, 50/60 Hz

Field of application

- Treatment of potable and product water (e.g. disinfection) in waterworks and domestic water installations
- Treatment of product water in the food and beverage industry
- Treatment of rinsing / industrial / process water for the food and beverage industry, e.g. cleaning and disinfection of pipework, vessels and machinery (cleaning in place)
- Monitoring of potable water distribution

3.1 Measuring and Control Points DULCOTROL® DWCa_P Potable Water/F&B

3.1.2 Permissible measured variable combinations for DULCOTROL® DWCa_P Potable water/F&B

Sample water 1: Potable water, product water															
Measured variable 1 (channel 1)	Measured variable 2 (channel 2)														
	00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0	
Free chlorine < pH 8	C0	х			Х	Х	Х	Х							
Free chlorine pH value > 8 and stable	C1	х			Х	Χ	Х	Х							
Total chlorine (free and combined chlorine)	G0	х				Х	Х								
рН	P0	х				Χ									
ORP	R0	х				Х									
Chlorine dioxide	D0	х				Х	Х		Х						
Chlorite	10	х													
Conductivity	L0	х				Х	Х								
Ozone	Z0	х				Х	Х								
Fluoride	F0	х				Χ									
Hydrogen peroxide	H0	х				Х									
Peracetic acid	A0	х				х				х					
Dissolved oxygen	X0	х				Х									

Sample water 2: Rinsing water, process water, industrial process water															
Measured variable 1 (channel 1)	Measured variable 2 (channel 2)														
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0
Free chlorine < pH 8 and stable	C1	x				Х	Х								
Total chlorine (free and combined chlorine)	G0	х				Х	Х								
рН	P0	х				Х									
ORP	R0	х				Х									
Chlorine dioxide	D0	х				Х	Х								
Chlorite	10	х													
Conductivity	L0	х				Х	Х								
Ozone	Z0	х				Х	Х								
Fluoride	F0	х				Х									
Hydrogen peroxide	H0	х				х									
Peracetic acid	A0	х				Х				Х					

Sample water H: Potable and product water, 45 °C65 °C															
Measured variable 1 (channel 1)	Measured variable 2 (channel 2)														
	00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0	
Free chlorine	C1	х				Х									
pH	P0	х				х									
ORP	R0	х				Х									
Conductivity	LO	х				х	Х								

When ordering, state the identity code with the above order of measured variable 1/measured variable 2 i.e. DWCa P... C0_P0... and not DWCa P... P0_C0...

Other measured variable combinations on request.

3.1 Measuring and Control Points DULCOTROL® DWCa_P Potable Water/F&B

3.1.3 Identity Code Ordering System for DULCOTROL® DWCa_P Potable Water/F&B

DWCa	Applic	ation														
•a	Р		e water													
		Water	to be n	neasure	d											
		1		e water/p												
		2		g water/i												
		Н		ater to m				(measu	red varia	ables C	1, P0, R	0, L0 on	ly)			
					1, measured variable 1 ee chlorine < pH 8											
			C0				. 0	ملطمهما								
			C1 G0				e > 8 and d combi		rino\							
			P0	pH	nionne	iree an	u combi	nea chic	ririe)							
			R0	ORP												
			D0		e dioxic	le										
			10	Chlorit												
			LO	Condu												
			Z0	Ozone												
			F0	Fluorid	е											
			H0	Hydrog	gen perc	oxide										
			A0		tic acid											
			X0	Dissolv	ed oxyg	gen										
						easure	d variat	ole 2 (op	otional)							
				00	none											
				C0		hlorine «		0								
				C1			H value			wim = \						
				G0 P0	pH	nionne	(iree and	u combii	ned chlo	rine)						
				R0	ORP											
				D0	-	ne dioxid	de									
				10	Chlorit											
				LO	Condu	ctivity										
				Z0	Ozone											
				F0	Fluorid	le										
				H0	Hydrog	gen per	oxide									
				A0		etic acid										
				X0		ed oxy										
							Controll									
					0 9				measu			-1-				
	 				9				bidirect	ionally	controlla	ıbie				
ocun E	nentatio English		uage			0	unicati Withou		пасе							
N.	English					4		IBUS®-[)P*							
S	Spanis						Data I									
Γ	Italian						0	Withou	ıt							
R	French	ı					1	Data lo	gger wit	h meas	ured val	ue displ	ay on SD	card card		
1	Finish							Hardw	are exp	ansion						
3G	Bulgari							0	Withou	-						
N	Chines	e						1	Protect	ive RC	circuit fo	r output	relay			
Z	Czech									r equip						
K	Danish								0	With se						
E iR	Estonia	an							1		it senso	rs				
iK U	Greek Hungai	rian								Version 0		mounto	l with De	oMinent Logo		
D P	Japane									В				anel with ProMinent logo		
r R	Korean											•	treatme			
T	Lithuan										0	Withou		JING .		
V	Latvian										1			or measured variable D0, Z0)		
IL.	Dutch												cations			
L	Polish											01	CE (Sta	andard)		
PΤ	Portugi															
0	Roman															
RU.	Russia															
E	Swedis															
K	Slovaki															
SL SV	Sloven															
V	Swedis	sh														
Н	Thai															
DWC	a P	1	C	0 PC) 9	0	1	0	0	0	1	01	EN	Identity code as a representative examp		

Permissible measured variable combinations for DULCOTROL® DWCa_P Potable water/F&B see → 3-4

Measuring and Control Points DULCOTROL® DWCa_P Potable Water/F&B

3.1.4

Examples of DULCOTROL® DWCa_P Potable Water/F&B

P_DCT_0035_SW1 similar figure

P_DCT_0036_SW1 similar figure

Example 1: DWCa_P_1_D0_I0_0_0_0_0_0_0_01_EN

Application in potable water/F&B:

Measurement of chlorine dioxide and chlorite in potable water/product water with an integrated data logger.

Controller

DACa PA 6 1 4 0 0 0 0 1 0 01 0 EN

Fitting

- DGM_A_3_2_0_T_0_0_2:
 - 1 measuring module: Chlorine dioxide sensor
 - 1 measuring module: Chlorite sensor
 - 1 flow control module

Sensors

- CDE-2-mA 0.5 ppm
- CLT1-mA-0.5 ppm

Panel-mounted water treatment system

Filter

Example 2: DWCa_P_2_P0_C0_9_0_0_1_0_0_01_EN

Application in potable water/F&B:

Two-way control of pH and chlorine in rinsing water. The sample water is filtered through a 100 µm filter. The controller contains a relay protective RC circuit.

Controller

■ DACa PA 6 1 4 0 0 0 0 0 1 01 0 EN

Fitting

■ DLG III for pH and chlorine monitoring + flow control

Sensors

- CBR1-mA 2ppm
- PHER 112-SE

Panel-mounted water treatment system

Filter

Measuring and Control Points DULCOTROL® **DWCa_W Waste Water**

3.2.1

Overview of DULCOTROL® DWCa_W Waste Water

The compact measuring and control system for the reliable monitoring and treatment of waste

Monitoring and treatment of waste water with DULCOTROL® Waste Water - the compact measuring and control system specially designed for applications in municipal and industrial waste water treatment.

The measuring and control systems DULCOTROL® waste water are used in all branches of industry where waste water is treated. All the necessary components are mounted on a polypropylene panel and ready to connect. The choice of components is matched to the application. The measuring and control systems can be configured using the relevant identity code ordering system. With the "panel-mounted" version, all the components except the sensors are mounted on a polypropylene panel. In the "assembly kit" version, all components are supplied loose in a package. The DULCOTROL® ordering system works with user-based selection criteria so that you can select the most appropriate measuring and control system, largely without technical knowledge. One or two measured variables can be configured in each product range.

Your benefits

- Availability of all key chemical measured parameters for water treatment
- Application-optimised configuration of components by user-based order criteria
- Configuration of 1 or 2 complete measuring and control points on a plate or as an assembly
 - The equipment on the controllers can be selected
- Flexible use by designing the measuring and control point fully assembled or as an assembly
- Flexible adaptation to special applications and measuring ranges by designing the measuring and control points without sensors and ordering the sensor type and measuring range separately
- Ready-to-connect plug-and-play measuring and control points for quick, easy installation and
- Extensive optional accessories (pressure reducers, filters, heat exchangers, sample water pump)

Technical Details

- Installation in the bypass of the main water line through which the medium flows
- Max. pressure, depending on design: 1 bar/3 bar/6 bar
- Flow, depending on design: 15...40 l/h/ 40...65 l/h/ 300...500 l/h
- Max. feed chemical temperature: primarily up to 45 °C, with some versions up to 65 °C (max. 2 bar)
- Ambient temperature: + 5...50 °C
- Degree of protection: IP65
- Power supply: 90 240 V, 50/60 Hz

Field of application

- Treatment of industrial and municipal waste water
- pH neutralisation
- Disinfection
- Detoxification
- Desalination of process water
- Control of dissolved oxygen
- Monitoring

3.2 Measuring and Control Points DULCOTROL® DWCa_W Waste Water

3.2.2 Permissible measured variable combinations for DULCOTROL® DWCa_W Waste water

Sample water 4,5,7: clear and turbid waste water																
Measured variable 1 (channel 1)			Measured variable 2 (channel 2)													
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0	
Free chlorine < pH 8 and stable	C1	х				Х	Х									
Total chlorine (free and combined chlorine)	G0	х				Х	Х									
рН	P0	х				Х										
ORP	R0	х				Х										
Chlorine dioxide	D0	х				Х	Х									
Chlorite	10	х														
Conductivity	L0	х				Х	Х									
Ozone	Z0	х				Х	Х									
Fluoride	F0	х				х										
Hydrogen peroxide	H0	х				Х										
Peracetic acid	A0	х				х				х						

With sample water 6: waste water containing sludge															
Measured variable 1 (channel 1)		Measured variable 2 (channel 2)													
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0
Free chlorine < pH 8 and stable	C1														
Total chlorine (free and combined chlorine)	G0														
pH	P0	х				Х	Х								
ORP	R0	х				Х									
Chlorine dioxide	D0														
Chlorite	10														
Conductivity	L0	х				Х	X								Χ
Ozone	Z0														
Fluoride	F0														
Hydrogen peroxide	H0														
Peracetic acid	A0														
Dissolved oxygen	X0	x				Х									

Sample water H: Potable and product water, 45 °C65 °C															
Measured variable 1 (channel 1)		Measured variable 2 (chann													
		00	C0	C1	G0	P0	R0	D0	10	L0	Z0	F0	H0	A0	X0
Free chlorine	C1	х				Х									
рН	P0	х				х									
ORP	R0	х				Х									
Conductivity	L0	х				х	х								

When ordering, state the identity code with the above order of measured variable 1/measured variable 2 i.e. DWCa W... $C0_P0...$ and not DWCa W... $P0_C0...$

Other measured variable combinations on request.

3.2 Measuring and Control Points DULCOTROL® DWCa_W Waste Water

3.2.3 Identity Code Ordering System for DULCOTROL® DWCa_W Waste Water

,	W	Waste	water											
	''			neasure	he									
		4		waste w										
		5		water w		d partic	le frac	tion. tu	ırbid					
		6								na slude	ae			
		7		ste water with solid particle fraction, containing sludge ste water, clear or turbid, with fluoride content and pH < 7										
		Н										. P0. R	80, L0 only)	
				nel 1, m				,				, -,	· · · · · · · · · · · · · · · · · · ·	
			C1		hlorine		ubic i							
			G0				ind con	nbined	d chlorin	ne)				
			P0	рН						-,				
			R0	ORP										
			D0	Chlorii	ne diox	ide								
			10	Chlorit	e									
			LO	Condu	ctivity									
			Z0	Ozone	,									
			F0	Fluorio	de									
			H0	Hydro	gen pe	roxide								
			A0	Perace	etic aci	d								
			X0	Dissol	ved oxy	/gen								
				Chani	nel 2, n	neasur	ed var	iable	2 (opti	onal)				
				00	none				` .	•				
				C1	Free	chlorine	Э							
				G0	Total	chlorin	e (free	and c	ombine	d chlor	ine)			
ļ				P0	pН									
				R0	ORP									
				D0	Chlor	ine dio	xide							
				10	Chlor									
ļ				LO		uctivity								
ļ				Z0	Ozon									
				F0	Fluori									
				HO		gen pe								
				A0		etic ac								
				X0		lved ox								
						uring								
					0				bles me					
		_			9						nally co	ontrollab	DIE	
cum	nentatio		ıage			Comi 0	nunica I Witho		nterfac	e				
	English English					4	PROF		® DD*					
	Spanish					1								
	Italian						Data	With						
	French						1			with m	aacura	d value	display on SD card	
	Finish								lware e			u value	display on 3D card	
i	Bulgaria	an						0	Witho		1011			
	Chinese							1			C circu	it for no	ower relay	
'	Czech	C						l'			ipmen		ower relay	
	Danish								0		sensors			
	Estonia								1		ut sens			
ł	Greek								1	Versi				
	Hungar	ian				ĺ		ĺ		0		-mounte	red with ProMinent Logo	
	Japane					ĺ		ĺ		В			without panel with ProMinent logo	
	Korean					ĺ		ĺ		(M)		ied desi		
-	Lithuan					ĺ							er treatments	
	Latvian					ĺ					0	Withou		
	Dutch								1		1		ilter(not with waste water = 6, not for measured variable D0, Z0	
	Polish								1				ications	
	Portugu	iese							1			01	CE (Standard)	
	Roman								1					
	Russiar								1					
	Swedis								1					
	Slovaki								1					
	Sloveni								1					
	Swedis								1					
	Thai								1					

Permissible measured variable combinations for DULCOTROL® DWCa_W Waste water see → 3-8

Panel-Mounted Measuring/Control Stations

3.2 Measuring and Control Points DULCOTROL® DWCa_W Waste Water

3.2.4

Examples of DULCOTROL® DWCa_W Waste Water

Profilence

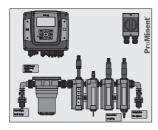
P_DCT_0037_SW1 Similar figure

Example 3: DWCa_W_5_H0_00_9_0_0_0_1_1_01_EN

Waste water application:

Two-way control of the hydrogen peroxide in turbid waste water. The controller contains a relay protective RC circuit and a data logger.

Controller


DACa PA 6 1 0 0 0 0 0 1 1 01 0 EN

Fitting

■ DLG III for hydrogen peroxide monitoring + flow control

Sensors

■ PER1-mA-50 ppm

P_DCT_0038_SW1 similar figure

ProMinent

P_DCT_0038_SW1 similar figure

Example 4: DWCa_W_6_P0_L0_9_0_0_0_1_1_01_EN

Waste water application:

Bidirectional control of pH and measurement of conductivity in waste water containing sludge. The controller contains a relay protective RC circuit and a data logger.

Controller

- For pH: DACa PA 6 1 4 0 0 0 0 1 1 01 0 EN
- For conductivity: Compact controller

Fitting

■ Piping + flow control

Sensors

- ICT 1
- PHEX 112-SE

Panel-Mounted Measuring/Control Stations

3.3 Technical Description of the Scope of Delivery of Measuring and Control Points DULCOTROL® DWCa

3.3.1 Technical Description of Controllers

(For detailed information see chap. Measuring and Control Technology)

The DULCOMETER® dialog DACa controller is used for measuring all measured variables with the exception of conductivity. The Compact controller is configured for conductivity measurement.

The DULCOMETER® diaLog DACa Controller used with the DULCOTROL® DWCa is available as a single or two-channel measuring and control device. The following versions of the device can be separately selected using the DULCOTROL® identity code ordering system:

- Specification: Communication interface
 - This specification defines whether a PROFIBUS® DP interface should be available on the controller.
- Specification: Data logger
 - This specification defines whether a data logger should be available on the controller.
- Specification: Hardware extension
 This specification defines whether a protective RC circuit should be available to protect relays subject to higher loading.

Hardware version and identity code of diaLog DACa controllers:

Hardware version	Identity code for diaLog DACa controller
1-channel device without RC, without data logger	DACa PA 6 1 0 0 0 0 0 0 0 1 0 EN
1-channel device with RC, without data logger	DACa PA 6 1 0 0 0 0 0 0 1 01 0 EN
2-channel device without RC, without data logger	DACa PA 6 1 4 0 0 0 0 0 0 1 0 EN
2-channel device with RC, without data logger	DACa PA 6 1 4 0 0 0 0 0 1 01 0 EN
1-channel device without RC, with data logger	DACa PA 6 1 0 0 0 0 0 1 0 01 0 EN
1-channel device with RC, with data logger	DACa PA 6 1 0 0 0 0 0 1 1 01 0 EN
2-channel device without RC, with data logger	DACa PA 6 1 4 0 0 0 0 1 0 01 0 EN
2-channel device with RC, with data logger	DACa PA 6 1 4 0 0 0 0 1 1 01 0 EN
1-channel device, PROFIBUS® DP	DACa PA 6 1 0 0 0 0 4 0 0 01 0 EN
2-channel device, PROFIBUS® DP	DACa PA 6 1 4 0 0 0 4 0 0 01 0 EN
1-channel device with RC, PROFIBUS® DP	DACa PA 6 1 0 0 0 0 4 0 1 01 0 EN
2-channel device with RC, PROFIBUS® DP	DACa PA 6 1 4 0 0 0 4 0 1 01 0 EN
1-channel device, PROFIBUS® DP, with data logger	DACa PA 6 1 0 0 0 0 4 1 0 01 0 EN
1-channel device with RC, PROFIBUS® DP, with data logger	DACa PA 6 1 0 0 0 0 4 1 1 01 0 EN
2-channel device, PROFIBUS® DP, with data logger	DACa PA 6 1 4 0 0 0 4 1 0 01 0 EN
2-channel device with RC, PROFIBUS® DP, with data logger	DACa PA 6 1 4 0 0 0 4 1 1 01 0 EN

	Water to be measured	Order no.
Compact controller for conductive conductivity	1	DCCaW006L30010EN
Compact controller for inductive conductivity	2, 4, 5, 6, 7	DDCaW006L60010EN

3.3 Technical Description of the Scope of Delivery of Measuring and Control Points DULCOTROL® DWCa

3.3.2

Technical Description of Sensors

(For detailed information see chap. Sensor Technology DULCOTEST®)

The identity code specifications "Application", "Measured variable" and "Water to be measured" define the sensor type to be used as specified below in the tables.

If another sensor type is necessary, the measuring/control panel can also be supplied without sensors (see identity code specification: "Sensor equipment"). The desired sensor should then be ordered separately.

Sensor types for the defined specifications "measured variable" and "water to be measured" for the potable water ("P") application

Measured variable		Water to be measured	Sensor type	Order no.
Free chlorine with pH value < 8	C0	1	CLE 3-mA-0.5 ppm	792927
Free chlorine with pH value > 8	C1	1	CBR 1-mA-0.5 ppm	1038016
Free chlorine	C1	2	CBR 1-mA-2 ppm	1038015
Free chlorine	C1	Н	CLO 2-mA-2 ppm	1033878
Total chlorine	G0	1	CTE 1-mA-0.5 ppm	740686
Total chlorine	G0	2	BCR 1-mA-2 ppm	1040115
pH	P0	1	PHEP 112 SE	150041
pH	P0	2	PHER 112 SE	1001586
ORP	R0	1	RHEP-Pt-SE	150094
ORP	R0	2	RHER-Pt-SE	1002534
ORP combined with ozone: R0 Z0	Z0	1/2	RHEP-Au-SE	1003875
Chlorine dioxide	D0	1	CDE 2-mA-0.5 ppm	792930
Chlorine dioxide (temperature-corrected)	D0	2	CDR 1-mA-2 ppm	1033393
Chlorite	10	1/2	CLT 1-mA-0.5 ppm	1021596
Conductivity, conductive	LO	1	LFTK 1 DE	1002822
Conductivity, inductive	L0	2	ICT 1	1023244
Ozone	Z0	1/2	OZE 3-mA-2 ppm	792957
Fluoride (temp.corr.)	F0	1/2	FLEP 010-SE / FLEP 0100-SE	1028279
			Reference electrode REFP-SE	1018458
			Pt 100 SE	305063
			Measuring transducer 4-20 mA FPV1	1028280
Hydrogen peroxide	H0	1	PER 1-mA-200 ppm	1022509
Hydrogen peroxide	HO	2	PER 1-mA-2000 ppm	1022510
Peracetic acid	Α0	1	PAA 1-mA-200 ppm	1022506
Peracetic acid	Α0	2	PAA 1-mA-2000 ppm	1022507
Dissolved oxygen	X0	1/2	DO 1-mA-20 ppm	1020532

Panel-Mounted Measuring/Control Stations

3.3 Technical Description of the Scope of Delivery of Measuring and Control Points DULCOTROL® DWCa

Sensor types for the defined specifications "measured variable" and "water to be measured" for the waste water ("W") application

Measured variable		Sample water	Sensor type	Order no.
pH	P0	4	PHEP 112 SE	150041
pH	P0	5	PHER 112 SE	1001586
pН	P0	6	PHEX 112 SE	305096
pH	P0	7	PHEF 012 SE	1010511
ORP	R0	4	RHEP-Pt-SE	150094
ORP	R0	5	RHER-Pt-SE	1002534
ORP	R0	6	RHEX-Pt-SE	305097
ORP combined with ozone: R0 Z0	Z0	1/2	RHEP-Au-SE	1003875
Fluoride (temp.corr.)	F0	4/5/7	FLEP 010-SE / FLEP 0100-SE	1028279
			Measuring transducer 4-20 mA FP 100 V1	1031331
			Reference electrode REFP-SE	1018458
Conductivity, inductive	LO	4/5/6/7	ICT 1	1023244
Total chlorine	G0	4/5	BCR 1-mA-2 ppm	1040115
Free chlorine	C1	4/5	CBR 1-mA-2 ppm	1038015
Free chlorine	C1	C1	CBR 1-mA-2 ppm	1033878
Hydrogen peroxide	H0	4/5	PER 1-mA-50 ppm	1030511
Dissolved oxygen	X0	4/5	DO 1-mA-20 ppm	1020532
Ozone	Z0	4/5	OZE 3-mA-2 ppm	792957
Chlorine dioxide (temperature-corrected)	D0	4/5	CDR 1-mA-2 ppm	1033393
Peracetic acid	A0	4/5	PAA 1-mA-200 ppm	1022506

3.3 Technical Description of the Scope of Delivery of Measuring and Control Points DULCOTROL® DWCa

3.3.3 Technical Description of Sensor Fittings

(For detailed information see chap. Sensor Technology DULCOTEST®)

The bypass fitting used depends in particular on the water to be measured but sometimes also on the measured variable or the combination of measured variables.

Sensor fittings in DULCOTROL® DWCa_P Potable water/F&B

Fitting type DGMa is used in the DULCOTROL® DWCa_P Potable water/F&B for all clear types of water similar to potable water. Fitting type DLG III is used for rinsing/industrial/process water with a turbid appearance in application "P".

Measured variable	Sample water	Sensor type
Free chlorine	1	DGMA
Total chlorine	1	DGMA
рН	1	DGMA
ORP	1	DGMA
Chlorine dioxide (CDE 2)	1	DGMA
Chlorite	1	DGMA
Conductivity	1	DGMA
Ozone	1	DGMA
Hydrogen peroxide	1	DGMA
Peracetic acid	1	DGMA
Temperature	1	DGMA
Free chlorine	2	DLGIII
Total chlorine	2	DLGIII
pH	2	DLGIII
ORP	2	DLGIII
Chlorine dioxide (CDR)	2	DLGIII
Chlorite	2	DLGIII
Ozone	2	DLGIII
Hydrogen peroxide	2	DLGIII
Peracetic acid	2	DLGIII
Temperature	2	DLGIII
Conductivity, inductive	2	ICT 3 in T-piece
Fluoride (temp.corr.)	1/2	DLGIV
Dissolved oxygen (DO1)	1	Adapter d75 pipe

Sensor fittings in DULCOTROL® DWCa_W Waste Water

Fitting type DLGIII is used in the DULCOTROL® DWCa_W Waste Water for all clear water or water with a minimal solid fraction. For sludge containing water in the "W" application the sensors are, wherever possible, fitted directly using adapters in the DN 40 PVC sample water line.

Measured variable	Sample water	Sensor type
Chlorine dioxide (CDR)	4/5	DLGIII
Fluoride	4/7	DLG IV (PVC) + magnetic stirrer
Dissolved oxygen (DO1)	4/5	Adapter for PVC pipe d75
Dissolved oxygen (DO2)	6	With pipe adapter for immersion
		pipe
Total chlorine	4/5	DLGIII
Conductivity, inductive (ICT 1)	4/5/6	Adapter for PVC pipe DN 40
		(bypass on plate)
Ozone	4/5	DLGIII
ORP	6	T-piece / DN 40
ORP	4/5	DLGIII
Temperature	6	T-piece / DN 40
Temperature	4/5	DLGIII
Hydrogen peroxide	4/5	DLGIII
рН	6	T-piece / DN 40
pH	4/5/7	DLGIII

Panel-Mounted Measuring/Control Stations

3.3 Technical Description of the Scope of Delivery of Measuring and Control Points DULCOTROL® DWCa

3.3.4 **Technical Description of the Hydraulic Connector/Pipework**

An 8 x 5 mm hose connector is used as the hydraulic connection for the sample water with "Water to be measured" 1, 2, 4, 5, 7 and a DN 25 connector for the "Water to be measured" 6 (containing sludge). Generally there is a shut-off ball valve fitted upstream and downstream of the bypass fitting. If ordered, a sample water filter is fitted upstream of the bypass fittings. The bypass fittings each contain a sampling tap. A metal pin is incorporated in the bypass fittings for potential equalisation.

3.3.5 **Technical Description of Optional Accessories**

	Sample water	Order no.
0.5 – 10 bar	1	302104
0.5 – 10 bar	2	1031212
Maximum flow, 1800 l/h; max. capacity: 4.5 m	1, 2, 4, 5, 7	1023089
-	1, 2, 4, 5, 7	1045244
10 μm	1	1031210
100 μm	2, 4, 5, 7	1031211
	0.5 – 10 bar Maximum flow, 1800 l/h; max. capacity: 4.5 m – 10 μm	0.5 – 10 bar 1 0.5 – 10 bar 2 Maximum flow, 1800 l/h; 1, 2, 4, 5, 7 max. capacity: 4.5 m - 1, 2, 4, 5, 7 10 µm 1

ProMinent®

3.3 Technical Description of the Scope of Delivery of Measuring and Control Points DULCOTROL® DWCa

Measuring Control and Metering Systems for Swimming Pool Water Treatment

4.0 Measuring Control and Metering Systems for Swimming Pool Water Treatment

4.0.1 DULCODOS® Pool Swimming Pool Metering Systems

The metering systems DULCODOS® Pool ensure the best water quality. The systems are available in four different designs. It is easy to work out which type is best suited to your requirements.

??Chlorine or active oxygen?

Historically, swimming pool water has always been treated with chlorine. Because it is an effective disinfectant and is highly oxidising, chlorine is also the chemical of choice for public pools. Clear and hygienically safe water is guaranteed.

The metering systems DULCODOS® Pool reliably keep the operating parameters in an optimum range and unpleasant side-effects, such as the smell of chlorine or burning eyes, are very rare.

Active oxygen is less effective than chlorine. It can be used for very gentle and environmentally-sound water treatment in pools with fewer users.

■ Soft

DULCODOS® Pool Soft is especially suited to private pools used by a small number of people. It works with active oxygen substances, which are less effective than chlorine. Water treatment with active oxygen is a good alternative for ecologically-minded pool owners or if users are allergic to chlorine. DULCODOS® Pool Soft uses no chlorine chemicals.

■ Basic

DULCODOS® Pool Basic regulates the pH and chlorine content using the redox potential. This is the direct measurement of effective oxidation in the water and is therefore an indication of the disinfectant effect and concentration of the metered chlorine. The concentration of chlorine cannot be determined with accuracy with this process. ORP measurements allow a particular range of chlorine to be set. DULCODOS® Pool Basic is robust and requires little maintenance.

Comfort

DULCODOS® Pool Comfort uses highly specific chlorine sensors to measure the chlorine content. The concentration of chlorine in the water can be determined and set with accuracy. The effectiveness of the pool filter is boosted by an integrated feeder assembly for flocculant, resulting in crystal-clear water! Numerous features to enhance operating convenience, such as measured values being mapped by a screen plotter or remote control from your PC, iPad or other tablet device using an integrated web server, make the metering system very popular with customers.

Professional

In addition to the features described above, DULCODOS® Pool Professional also measures the combined chlorine. This is an important parameter in public pools. It can be incorporated in the building management system via OPC and KNX and alarm messages can be sent by text or e-mail. Eco!Mode operating mode reduces the energy consumption of the filter pumps. The integrated soft PLC control can be used to operate several peripheral devices and functions. The swimming pool controller becomes the central control unit for all the swimming pool technology.

4.0 Measuring Control and Metering Systems for Swimming Pool Water Treatment

Choice of pumps

The metering systems DULCODOS® Pool allow you to choose which metering pump to fit on your complete system. The choice of pump depends entirely on the size of your pool and how often it is used.

- Peristaltic pumps DULCO®flex are suited to applications requiring few chemicals, such as small pools or those used infrequently. The pump reliably eliminates bubbles of gas formed during periods of non-use. Depending on the amount of use, the metering hose has to be replaced once or twice a year.
- Motor-driven metering pumps alpha have a higher capacity and longer maintenance intervals. Like peristaltic pumps, they are silent.
- Solenoid-driven metering pumps Beta® are not controlled by switching them on and off, like DULCO®flex or alpha, instead, their metering frequency is adjusted continuously, enabling the pump to have an extremely precise control action.
- Pumps with CAN bus system can be used in the DULCODOS® Pool Professional series. They communicate all operating messages, such as two-stage monitoring of the chemical reservoir, to the control.

Accessories

Whether you are looking for collecting pans for chemical tanks or portable test devices for measurement parameters – or even software for digital control: optional accessories make it even easier for you to operate the system.

Service

Installation, commissioning, training in how the system works, operation and maintenance: When you buy a DULCODOS® Pool system, it comes with service you can rely on – even if your pool is already quite old.

Metering System DULCODOS® Pool Soft

4.1.1

Metering System DULCODOS® Pool Soft

Ecologically convincing: chlorine-free water treatment with active oxygen in private swimming pools.

For swimming pools with volumes up to 100 m³

Chlorine-free water treatment system for environmentally operated private pools. Safe water disinfection with active oxygen as a turnkey complete solution.

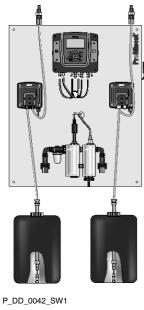
Complete system DULCODOS® Pool Soft for pH adjustment and chlorine-free disinfection with active oxygen. To prevent any germs in the pool from building up resistance to active oxygen, it is not metered continuously, but injected at intervals controlled by a timer.

Peristaltic pumps of the product range DULCO®flex, motor-driven metering pumps type alpha or solenoiddriven metering pumps type Beta® are used, depending on demand and the circulation volume.

Sensors, controllers and metering pumps form a unit with the chemical storage tanks, which can become operational without major installation work on your part.

The control device offers many deluxe functions, such as the recording of measured values on an SD memory card or remote access via the integral WEB server and LAN interface (optional).

Your benefits


- Simple, quick assembly
- Simple, menu-driven operation
- Chlorine-free
- Constantly good water quality
- Versatile monitoring functions

Technical Details

- 2-channel swimming pool controller Splash ControlPro+ with measurement/control of the pH value and metering of active oxygen using an integrated timer function, mounted on a wall plate ready for use.
- In-line probe housing with sample water monitoring, sample water filter and sensor for pH value
- Monitoring of the chemical reservoir
- Metering monitor to protect against over-metering
- Data logger with SD card
- Embedded web server with LAN interface (optional)
- Metering pumps alpha, DULCO®flex or Beta® to control the pH value and active oxygen content.
- Connector for point of injection: Injection valves with 1/2" screw thread
- Connectors for metering pumps/points of injection: PVC hose 10 x 4 mm
- Sample water connector: PE hose 8 x 5 mm
- Digital pause input
- Alarm relay output
- Electrical connection: 230 V AC, 50/60 Hz
- Dimensions with metering pumps alpha or Beta®:
 - 595 x 745 x 150 mm (W x H x D) mounting plate for measuring technology
 - 595 x 400 x 150 mm (W x H x D) mounting plate for pumps
- Dimensions with metering pumps DULCO®flex: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 10 kg or 6 kg (without pumps)

Field of application

Private swimming pool

Measuring Control and Metering Systems for Swimming Pool Water Treatment

4.1 Metering System DULCODOS® Pool Soft

Identity Code Ordering System for DULCODOS® Pool Soft

of 20 m ³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m ³	SPa Meas DO2			ntrol H ₂ 0	02										
Software-additional functions A Archiving of measured data including SD card		Hardy	vare-ad	lditional	function	ons									
Archiving of measured data including SD card Communication interfaces 0 none		0	- 101110												
Communication interfaces 0 none 7 Embedded web server, LAN Electrical connection A 230 V, 50/60 Hz, Swiss plug B 230 V, 50/60 Hz, Swiss plug Sensor equipment 0 with sensors			Softw	are-ado	litional	functio	ns								
The content of the			1					cluding	SD card	d					
The Embedded web server, LAN Electrical connection A					\cdot										
Electrical connection A 230 V, 5060 Hz, European standard plug B 230 V, 5060 Hz, Swiss plug Sensor equipment 0 with sensors Version 0 with sensors Version 0 Elegish A Swedish D German E English F French G G Zeach I Italian N Dutch P P Polish R R Russian S Spanish Metering pumps for acids/alkalis 0 without problement of the problement				-		ddod w	ob convo	r I ANI							
A 230 V, 50/60 Hz, Swisp July Sensor equipment O				'											
B Sensor equipment 0 with persors 1 wit									nean sta	tandard plug					
Sensor equipment															
1 with sensors Version 0 with proMinent® Logo Language A Swadish D German E English F French G Czech I Italian N Dutch P Polish R Russian S Spanish Metering pumps for acids/alkalis 0 without metering pumps 1 0 8 lhr (DULCO®tex DF2a 0208) 2 1.6 lh (DULCO®tex DF2a 0216) 3 2.4 lh (DULCO®tex DF2a 0217) 5 3.5 lh (alpha ALPc 1004 PVT) 6 1.5 lh (Beta® BT4b 0402 PVT) 7 2.8 lh (Beta® BT4b 0402 PVT) 8 4.5 lh (Beta® DF4b 0404 PVT) Withfunctional valve for acid/alkali pump 0 without metering pumps 1 0 without metering pumps 1 0 without metering pumps 1 0 without 1 with MFV (only for alpha and Beta®) Metering pumps 1 0 lou LOO®tex DF2a 0224) 1 li li li (DULCO®tex DF2a 0205) 1 li li li (DULCO®tex DF2a 0206) 1 li li li (DULCO®tex DF2a 10 0208) for pools up to a volure of 6 li li li li (Beta® BT4b 0402 PVT) for pools up to a volure of 6 li li li li (Beta® BT4b 0402 PVT) for pools up to a volure of 6 li li li li li leab BT4b 0402 PVT) for pools up to a volure of 6 li li li li li leab BT4b 0402 PVT) for pools up to a volure of 6 li li li li leab BT4b 0402 PVT) for pools up to a volure of 6 li li li li leab BT4b 0402 PVT) for pools up to a volure of 6 li li li li leab BT4b 0402 PVT) for pools up to a volure of 1 li															
Version 0 with ProMinent® Logo Language A Swedish D German E English F French G Czech I Italian N Dutch P Polish R Russian S Spanish Metring pumps for acids/alkalis 0 without metering pumps 1 0.8 l/h (OULCO®lex DF2a 0208) 2 1.6 l/h (OULCO®lex DF2a 0224) 4 1.8 l/h (OULCO®lex DF2a 0224) 4 1.8 l/h (alpha ALPc 1002 PVT) 5 3.5 l/h (alpha ALPc 1002 PVT) 6 1.5 l/h (Beta® T84 0402 PVT) 8 4.5 l/h (Beta® T84 0402 PVT) 9 Without metering pump 0 without metering pump 0 without metering pump 1 0 without metering pump 1 0 without metering pump 2 1.6 l/h (Deta® DF2a 0224) 4 1.8 l/h (Beta® T84 0402 PVT) 8 1 0 without metering pump 1 0 without metering pump 2 1.6 l/h (Deta® DF2a 0728) for pools up to a volure of of 0 m³ 2 1.4 l/h (DULCO®lex DF2a for 0228) for pools up to a volure of 6 m³ 3 2.4 l/h (DULCO®lex DF2a for 0229) for pools up to a volure of 6 m³ 4 1.8 l/h (plut Co®lex DF2a for 0224) for pools up to a volure of 6 m³ 4 1.8 l/h (plut Co®lex DF2a for 0224) for pools up to a volure of 6 m.5 l/h (Beta® T84 0404 PVT) for pools up to a volure of 6 m.5 l/h (Beta® T84 0404 PVT) for pools up to a volure of 6 m.5 l/h (Beta® T84 0404 PVT) for pools up to a volure of 7 2.8 l/h (Beta® T84 0404 PVT) for pools up to a volure of 8 4.5 l/h (Beta® T84 0404 PVT) for pools up to a volure of 8 mithout 1 with MFV (only for alpha and Beta®) 1 installation 0 without 1 with MFV (only for alpha and Beta®) 1 installation 0 supplied loose without mounting plate assembled on a base plate 1 assembled on a base plate						0	with s	ensors							
Without ProMinent® Logo Language						1	withou	ıt senso	rs						
Language A D Swedish D German E English F French G Czech I Italian N Dutch P Polish R Russian S Spanish Metering pumps for acids/alkalis 0 without metering pumps 1 0.8 l/h (DULCO*flex DF2a 0208) 2 1.6 l/h (DULCO*flex DF2a 0216) 3 2.4 l/h (DULCO*flex DF2a 0216) 4 1.8 l/h (alpha ALPc 1002 PVT) 5 3.5 l/h (alpha ALPc 1002 PVT) 5 3.5 l/h (alpha ALPc 1004 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0404 PVT) Multifunctional valve for acid/alkali pump 0 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO*flex DF2a for 0208) for pools up to a volure of vol of 40 m³ 2 1.6 l/h (DULCO*flex DF2a for 0224) for pools up to a volure of vol of 60 m³ 3 3 2.4 l/h (DULCO*flex DF2a for 0224) for pools up to a volure of 5 3.5 l/h (alpha ALPc 1002 PVT) for pools up to a volure of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volure of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volure of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volure of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volure of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 6 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1 l/h (Beta® BT4b 0404 PVT) for pools up t															
A Swedish German E English F French G Czech I Italian N Dutch P Polish R Russian S Spanish Metering pumps for acids/alkalis 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a 0208) 2 1.6 l/h (DULCO®flex DF2a 0216) 3 2.4 l/h (DULCO®flex DF2a 0224) 4 1.8 l/h (alpha ALP 1002 PVT) 5 3.5 l/h (alpha ALP 1002 PVT) 5 3.5 l/h (alpha ALP 1002 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0402 PVT) 8 4.5 l/h (Beta® BT4b 0402 PVT) Multifunctional valve for acid/alkali pump 0 without metering pumps 1 with MFV (only for alpha and Beta®) Metering pumps for acid/alkali pump 0 without metering pumps 1 l/h (l/h (DULCO®flex DF2a for 0208) for pools up to a volure of 40 m² 2 a l/h (DULCO®flex DF2a for 0224) for pools up to a volure of 60 m² 3 c l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 61 m² 4 l/h l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 5 3.5 l/h (alpha ALPc 1002 PVT) for pools up to a volure of 5 3.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 8 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 1.5							1			Inent® Logo					
German E English French Ge Czech I Islaian N Dutch P Polish R Russian S Spanish Metering pumps for acids/alkalis 0 without metering pumps 1 0.8 l/h (DULCO®Hex DF2a 0208) 2 1.6 l/h (DULCO®Hex DF2a 0216) 3 2.4 l/h (DULCO®Hex DF2a 0216) 3 1.8 l/h (alpha ALPc 1002 PVT) 5 3.5 l/h (alpha ALPc 1002 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0402 PVT) 8 4.5 l/h (Beta® BT4b 0402 PVT) Multifunctional valve for acid/alkali pump 0 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without destering pumps 1 0.8 l/h (DULCO®Hex DF2a for 0208) for pools up to a volure of 40 mg 20 m³ 2 1.6 l/h (DULCO®Hex DF2a for 0208) for pools up to a volure of 60 m³ 3 2.4 l/h (DULCO®Hex DF2a for 0204) for pools up to a volure of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volure of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volure of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volure of 72 l/h (Beta® BT4b 0401 PVT) for pools up to a volure of 73 l/h (Beta® BT4b 0402 PVT) for pools up to a volure of 74 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 75 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 15 l/h (Bet										Nich					
E English F French G Czech I Italian N Dutch P Polish R Russian S Spanish Metering pumps for acids/alkalis 0 without metering pumps 1 0.8 lh (DULCO*flex DP2a 0208) 2 1.6 lh (DULCO*flex DP2a 0216) 3 2.4 lh (DULCO*flex DP2a 0224) 4 1.8 lh (alpha ALPc 1002 PVT) 5 3.5 lh (alpha ALPc 1002 PVT) 5 3.5 lh (Beta* BT4b 0402 PVT) 6 1.5 lh (Beta* BT4b 0402 PVT) 8 4.5 lh (Beta* BT4b 0404 PVT) Multifunctional valve for acid/alkali pump 0 without 1 with MFV (only for alpha and Beta*) Metering pumps for disinfection 0 without netering pumps 1 lo fill OULCO*flex DF2a for 0208) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0402 PVT) for pools up to a volure of 6 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 8 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of 1.5 lh (Beta* BT4b 0404 PVT) for pools up to a volure of															
French															
G Czech It Italian N Dutch P Polish R Russian S Spanish Metering pumps for acids/alkalis 0 without metering pumps 1 0.8 l/n (DULCO®flex DF2a 0208) 2 1.6 l/n (DULCO®flex DF2a 02216) 3 2.4 l/n (DULCO®flex DF2a 02214) 4 1.8 l/n (apha ALPc 1002 PVT) 5 3.5 l/n (alpha ALPc 1002 PVT) 6 1.5 l/n (Beta® BT4b 0401 PVT) 7 2.2 s.l/n (Beta® BT4b 0404 PVT) 8 4.5 l/n (Beta® BT4b 0404 PVT) Multifunctional valve for acid/alkali pump 0 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/n (DULCO®flex DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/n (DULCO®flex DF2a for 0224) for pools up to a volu of 20 m³ 3 1.6 l/n (DULCO®flex DF2a for 0224) for pools up to a volu of 80 m³ 4 1.8 l/n (alpha ALPc 1004 PVT) for pools up to a volume of 5 3.5 l/n (alpha ALPc 1004 PVT) for pools up to a volume of 6 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 7 2.2 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 8 4.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 9 2.8 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 PVT) for pools up to a volume of 1.5 l/n (Beta® BT4b 0404 P									_						
N								G	Czech	h					
P Polish R Russian S Spanish Metering pumps for acids/alkalis 0 without metering pumps 1 0.8 l/h (DULCO®16x DF2a 0208) 2 1.6 l/h (DULCO®16x DF2a 0204) 3 2.4 l/h (DULCO®16x DF2a 0224) 4 1.8 l/h (alpha ALPc 1002 PVT) 5 3.5 l/h (alpha ALPc 1002 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0402 PVT) 8 4.5 l/h (Beta® BT4b 0402 PVT) 8 4.5 l/h (Beta® BT4b 0402 PVT) Multifunctional valve for acid/alkali pump 0 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO®16x DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/h (DULCO®16x DF2a for 0204) for pools up to a volu of 40 m³ 3 2 2.4 l/h (DULCO®16x DF2a for 0204) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) 1 installation 0 supplied loose without mounting plate assembled on a base plate Approvals								1							
R Spanish Metering pumps for acids/alkalis 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a 0208) 2 1.6 l/h (DULCO®flex DF2a 0216) 3 2.4 l/h (DULCO®flex DF2a 0224) 4 1.8 l/h (alpha ALPc 1002 PVT) 5 3.5 l/h (alpha ALPc 1004 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0402 PVT) 8 4.5 l/h (Beta® BT4b 0404 PVT) 8 4.5 l/h (Beta® BT4b 0404 PVT) 9 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volure of of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volure of of 60 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volure of 60 m³ 4 1.8 l/h (alpha ALPc 1004 PVT) for pools up to a volure of 61.5 l/h (alpha ALPc 1004 PVT) for pools up to a volure of 61.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volure of 9 without multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) 1 installation 0 supplied loose without mounting plate assembled on a base plate Approvals															
S Spanish Metering pumps for acids/alkalis 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a 0208) 2 1.6 l/h (DULCO®flex DF2a 0224) 4 1.8 l/h (alpha ALPc 1002 PVT) 5 3.5 l/h (alpha ALPc 1004 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0402 PVT) 8 4.5 l/h (Beta® BT4b 0402 PVT) 8 4.5 l/h (Beta® BT4b 0404 PVT) 9 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without netering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volure of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volure of 40 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volure of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volure of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volure of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0401 PVT) for pools up to a volure of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volure of 8 4.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volure of 1 with MFV (only for alpha and Beta®) 1 supplied loose without mounting plate assembled on a base plate Approvals															
Metering pumps for acids/alkalis 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a 0208) 2 1.6 l/h (DULCO®flex DF2a 0216) 3 2.4 l/h (DULCO®flex DF2a 0224) 4 1.8 l/h (alpha ALPc 1002 PVT) 5 3.5 l/h (alpha ALPc 1004 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0404 PVT) 8 4.5 l/h (Beta® BT4b 0404 PVT) Multifunctional valve for acid/alkali pump 0 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volure of 40 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volure of 40 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volure of 60 m³ 3 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 60 m³ 4 1.8 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 61 l.5 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 9 1 1 1 1 1 1 1 1 1															
0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a 0208) 2 1.6 l/h (DULCO®flex DF2a 0216) 3 2.4 l/h (DULCO®flex DF2a 0224) 4 1.8 l/h (alpha ALPc 1004 PVT) 5 3.5 l/h (alpha ALPc 1004 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0401 PVT) 8 4.5 l/h (Beta® BT4b 0404 PVT) 8 4.5 l/h (Beta® BT4b 0405 PVT) 9 1 0 0 0 0 0 0 0 0 0								S							
1 0.8 l/h (DULCO®flex DF2a 0208) 2 1.6 l/h (DULCO®flex DF2a 0216) 3 2.4 l/h (DULCO®flex DF2a 0216) 4 1.8 l/h (alpha ALPc 1002 PVT) 5 3.5 l/h (alpha ALPc 1004 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0402 PVT) 8 4.5 l/h (Beta® BT4b 0404 PVT) Multifunctional valve for acid/alkall pump 0 without 1 with MY (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 20 m³ 3 2 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 6 m³ 4 1.8 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 5 3.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 1 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate assembled on a base plate Approvals															
1.6 l/h (DULCO®flex DF2a 0216) 3															
3															
5 3.5 l/h (alpha ALPc 1004 PVT) 6 1.5 l/h (Beta® BT4b 0401 PVT) 7 2.8 l/h (Beta® BT4b 0402 PVT) 8 4 5.5 l/h (Beta® BT4b 0402 PVT) 8 without 1 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 9 without with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate assembled on a base plate Approvals									3	2.4 l/h (DULCO®flex DF2a 0224)					
1.5 l/h (Beta® BT4b 0401 PVT) 2.8 l/h (Beta® BT4b 0402 PVT) 4.5 l/h (Beta® BT4b 0402 PVT) Multifunctional valve for acid/alkali pump 0 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 9 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals										1.8 l/h (alpha ALPc 1002 PVT)					
2.8 l/h (Beta® BT4b 0402 PVT) 8 4.5 l/h (Beta® BT4b 0404 PVT) Multifunctional valve for acid/alkali pump 0 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
4.5 l/h (Beta® BT4b 0404 PVT) Multifunctional valve for acid/alkali pump 0 without 1 with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without vith MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
Multifunctional valve for acid/alkali pump Without															
without with MFV (only for alpha and Beta®) Metering pumps for disinfection 0 without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals									8	,					
with MFV (only for alpha and Beta®) Metering pumps for disinfection without metering pumps 1															
Metering pumps for disinfection O without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
0 Without metering pumps 1 0.8 l/h (DULCO®flex DF2a for 0208) for pools up to a volu of 20 m³ 2 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m³ 3 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 6 Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals										, , , , ,					
of 20 m ³ 1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m ³ 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m ³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
1.6 l/h (DULCO®flex DF2a for 0216) for pools up to a volu of 40 m³ 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volu of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate assembled on a base plate Approvals															
of 40 m³ 2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volume of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate assembled on a base plate Approvals															
2.4 l/h (DULCO®flex DF2a for 0224) for pools up to a volume of 60 m³ 4 1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 5 3.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 6 1.5 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 7 2.8 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of 8 Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
1.8 l/h (alpha ALPc 1002 PVT) for pools up to a volume of 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate assembled on a base plate Approvals															
5 3.5 l/h (alpha ALPc 1004 PVT) for pools up to a volume of 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals										of 60 m ³					
6 1.5 l/h (Beta® BT4b 0401 PVT) for pools up to a volume of 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
7 2.8 l/h (Beta® BT4b 0402 PVT) for pools up to a volume of 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
8 4.5 l/h (Beta® BT4b 0404 PVT) for pools up to a volume of Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
Multifunctional valve for disinfection pump 0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
0 without 1 with MFV (only for alpha and Beta®) Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals										, , , , ,					
Installation 0 supplied loose without mounting plate 1 assembled on a base plate Approvals															
0 supplied loose without mounting plate assembled on a base plate Approvals										1 with MFV (only for alpha and Beta®)					
1 assembled on a base plate Approvals										·					
Approvals										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
										·					
U with CE certification															
										0 with CE certification					
OSPa DO2 0 1 0 A 0 0 E 2 0 2 0 1 0 Identity code as a representative ex										0 2 0 1 0 Identity code as a representative exampl					

4.2 Metering System DULCODOS® Pool Basic

4.2.1

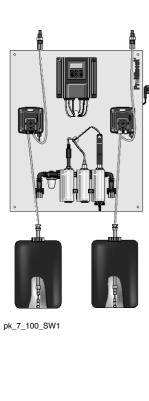
Metering System DULCODOS® Pool Basic

Convenient and simple: pure water in private swimming pools - fully automatically and correctly. For swimming pools with a circulation capacity of up to 200 m³/h

The chlorine metering system DULCODOS® Pool Basic is a complete solution for private swimming pools where the chlorine content is controlled using the low-maintenance measurement of the ORP

Complete system for the fully automatic adjustment of pH and chlorine content (using the measured variable redox potential) in swimming pool water. Peristaltic pumps of the product range DULCO®flex or motor-driven metering pumps type alpha are used, depending on demand and the circulation volume. Sensors, controllers and metering pumps form a single perfectly coordinated unit with the chemical storage tanks, which can reliably get to work without a lot of installation effort on your part.

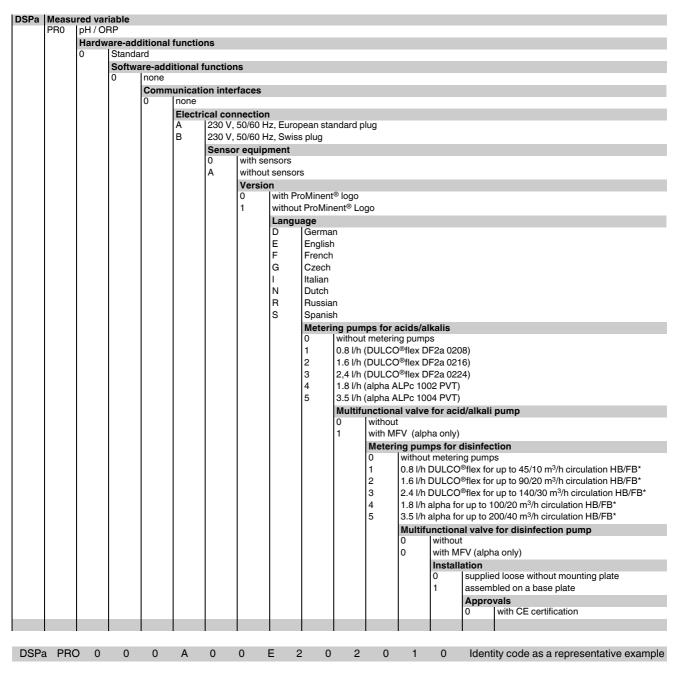
Your benefits


- Simple, quick assembly
- Simple, menu-driven operation
- Constantly good water quality
- Versatile monitoring functions

Technical Details

- 2-channel swimming pool controller Splash Control with measurement, control and metering functions for pH and redox potential (chlorine metering)
- In-line probe housing with sample water monitoring, sample water filter and measuring probe for pH value and redox potential, fitted on a wall panel.
- 2 metering pumps alpha or DULCO®flex
 - Monitoring of the chemical reservoir
- Metering monitor to protect against over-metering
- Connectors for points of injection: Injection valves with 1/2" screw thread
- Connectors for metering pumps/points of injection: PVC hose 10 x 4 mm
- Sample water connector: PE hose 8 x 5 mm
- Digital pause input
- Alarm relay output
- Electrical connection: 230 V AC, 50/60 Hz
- Dimensions: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 10 kg or 6 kg (without pumps)

Field of application


Private swimming pool

4.2 Metering System DULCODOS® Pool Basic

Identity Code Ordering System for DULCODOS® Pool Basic

 Calculated for 12 % sodium-calcium hypochlorite HB = Indoor swimming pool

FB = Outdoor swimming pool

Measuring Control and Metering Systems for Swimming Pool Water Treatment

4.3 Metering System DULCODOS® Pool Comfort

4.3.1

Metering System DULCODOS® Pool Comfort

Convenient and simple: crystal-clear water in private swimming pools.

For swimming pools with a circulation capacity of up to 225 m³/h

The chlorine metering system DULCODOS® Pool Comfort is the convenient solution for pH adjustment and disinfection of swimming pools with liquid chlorine products. Remote access is possible via LAN

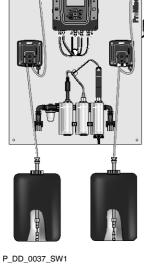
Your benefits

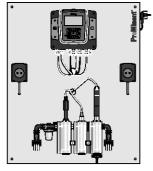
Complete system DULCODOS® Pool Comfort for pH adjustment and disinfection with liquid chlorine products. Peristaltic pumps of the product range DULCO®flex, motor-driven metering pumps type alpha or solenoid-driven metering pumps type Beta® are used, depending on demand and the circulation volume.

An integrated flocculant metering station (optional) ensures crystal-clear water.

Sensors, controllers and metering pumps form a unit with the chemical storage tanks, which can become operational without major installation work on your part.

The control device offers many deluxe functions, such as the recording of measured values on an SD memory card or remote access via the integral WEB server and LAN interface (optional).


- Simple, quick assembly
- Simple, menu-driven operation
- Brilliant water quality
- Versatile monitoring functions


Technical Details

- 2-channel controller (pH/ORP or pH/chlorine) or 3-channel controller (pH/ORP/chlorine) Splash Control Pro+ with measurement/control and metering functions for pH and chlorine concentration, ready mounted on a wall plate
- Integrated flocculant metering station (optional)
- In-line probe housing with sample water monitoring, sample water filter and measuring probes for pH and chlorine content (DC2 for free chlorine, DC4 for free chlorine in the presence of isocyanuric acid stabiliser)
- Monitoring of the chemical reservoir
- Metering monitor to protect against over-metering
- Data logger with SD card
- Embedded web server with LAN interface (optional)
- Metering pumps alpha, DULCO®flex or Beta® to control the pH value and chlorine content, DULCO®flex for metering flocculant (optional).
- Connector for point of injection: Injection valves with 1/2" screw thread
- Connectors for metering pumps/points of injection: PVC hose 10 x 4 mm
- Sample water connector: PE hose 8 x 5 mm
- Digital pause input
- Alarm relay output
- Electrical connection: 230 V AC, 50/60 Hz
- Dimensions with metering pumps alpha or Beta® and/or with "flocculant metering" option:
 - 595 x 745 x 150 mm (W x H x D) mounting plate for measuring technology
 - 595 x 400 x 150 mm (W x H x D) mounting plate for pumps
- Dimensions with metering pumps DULCO®flex: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 10 kg or 6 kg (without pumps)

Field of application

High-end private pool

P DD 0045 SW1

4.3 Metering System DULCODOS® Pool Comfort

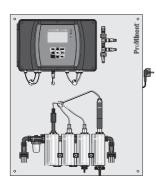
Identity Code Ordering System for DULCODOS® Pool Comfort

DR2	pH/OF		/ 1 .				0 \							
DC2				e (chlorine sensor CLE 3-mA-2ppm)										
DC3 DC4		DRP / free chlorine (chlorine sensor CLE 3-mA-2ppm) ree chlorine in the presence of the stabiliser isocyanuric acid (chlorine sensor CGE 2-mA-2ppm)												
204	1.			l functio		io olabii	1001 1000	yanano	adia (diliania deliadi dale 2 filia 2ppini)					
		Stand		·········										
		Softw	rare-additional functions Archiving of measured data including SD card											
		1	Archiv	ing of m	easured	data in	cluding	SD card						
				nunicati	on inte	rfaces								
			0	none										
		1	7	Embed Electri A										
								noan eta	andard plug					
				В			Hz, Swis	•	andara piag					
						or equi		o p.ug						
					0		ensors							
					В				C2 without sensors					
					С			able DC	C4 without sensors					
						Versi		N 4!	4® I					
			1			0		roMinen	nent® Logo					
			1			'	Langu		Logo					
			1				A	Swedi	ish					
			1				D	Germa	an					
			1				E	Englisl						
			1				F	French						
							G	Czech						
							N	Italian Dutch						
			1				P	Polish						
			1				R	Russia						
							S							
								Meteri	ing pumps for acids/alkalis					
								0	without metering pumps					
			1					1 2 3 4 5 6 7 8	0.8 l/h (DULCO®flex DF2a 0208)					
									1.6 l/h (DULCO®flex DF2a 0216) 2,4 l/h (DULCO®flex DF2a 0224)					
									1.8 l/h (alpha ALPc 1002 PVT)					
			1						3.5 I/h (alpha ALPc 1002 PVT)					
			1						1.5 l/h (Beta® BT4b 0401 PVT)					
									2,8 l/h (Beta [®] BT4b 0402 PVT)					
									4.5 l/h (Beta® BT4b 0404 PVT)					
									Multifunctional valve for acid/alkali pump					
									0 without 1 with MFV (only for alpha and Beta®)					
									Metering pumps for disinfection					
			1						0 without metering pumps					
			1						1 0.8 l/h DULCO®flex for up to 45/10 m³/h circulation HB/FB*					
									2 1.6 l/h DULCO®flex for up to 90/20 m³/h circulation HB/FB*					
			1						3 2.4 l/h DULCO®flex for up to 140/30 m³/h circulation HB/FB*					
									4 1.8 l/h alpha for up to 100/20 m³/h circulation HB/FB* 5 3.5 l/h alpha for up to 200/40 m³/h circulation HB/FB*					
									6 1.5 l/h Beta® for up to 85/20 m³/h circulation HB/FB*					
			1						7 2.8 l/h Beta® for up to 160/35 m³/h circulation HB/FB*					
			1						8 4.5 l/h Beta® for up to 260/55 m³/h circulation HB/FB*					
									Multifunctional valve for disinfection pump					
			1						0 without					
									1 with MFV (only for alpha and Beta®)					
									Installation					
			1						0 supplied loose without mounting plate					
			1						1 assembled on a base plate B Base plate with flocculant pump DF4a fitted					
			1						Approvals					
									0 with CE certification					

 Calculated for 12 % sodium-calcium hypochlorite HB = Indoor swimming pool

FB = Outdoor swimming pool

4.4 Metering System DULCODOS® Pool Professional

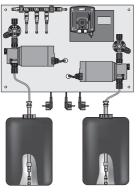

Metering System DULCODOS® Pool Professional 4.4.1

Professional and demanding: crystal-clear water in public swimming pools.

For swimming pools with a circulation capacity of up to 350 m³/h

Chlorine metering system for individual adjustment and monitoring of all common hygiene auxiliary parameters in public pools. DULCODOS® Pool Professional ensures crystal-clear water quality and lowers operating costs thanks to Eco!Mode.

Complete system DULCODOS® Pool Professional for individual adjustment and monitoring of all common hygiene auxiliary parameters in public pools, such as pH, redox potential and free and combined chlorine. Peristaltic pumps of the product range DULCO®flex, motor-driven metering pumps type alpha or solenoiddriven metering pumps type $\mathsf{Beta}^{\circledast}$ are used, depending on demand and the circulation volume.


An integrated flocculant metering station (optional) ensures crystal-clear water.

In Eco!Mode, the circulating volume of the swimming pool pumps is optimised depending on the water quality, enabling you to efficiently save energy.

The integrated SoftPLC allows the system to control optional peripheral devices and functions, such as UV systems, water attractions, lighting, heating and water top-up.

The system has many different communication interfaces that enable it to be integrated in networks or a building management system and it can also be remotely monitored and controlled with an Apple® iPad or tablet PC.

Sensors, controllers, metering pumps and the process chemical storage tanks form a single unit with the other peripheral swimming pool technology used, which can handle your work without a lot of installation effort on your part.

pk 7 105 SW1

Your benefits

- Simple, quick assembly
- Brilliant water quality
- Eco!Mode helps cut operating costs
- Versatile communication interfaces
- Central control of peripheral devices and functions too

Technical Details

- Multi-channel, multi-parameter controller DULCOMETER® DULCOMARIN® 3 with measuring, control and metering functions for pH, redox potential, free and combined chlorine in various combinations depending on the type, ready-wired for use and mounted on a wall panel
- Optional integrated flocculant metering station
- In-line probe housing with sample water monitoring, sample water filter and all sensors
- Monitoring of the chemical reservoir with a pre-alarm (options A and F)
- Metering monitor to protect against over-metering
- Screen plotter for graphic mapping of measured values, data logger with SD card
- Embedded web server with LAN interface (optional)
- OPC and KNX for integration in building management systems, alarm function by text or e-mail
- Metering pumps alpha, DULCO®flex or Beta® to control the pH value and chlorine content, DULCO®flex for metering flocculant (optional)
- Connector for point of injection: Injection valves with 1/2" screw thread
- Connectors for metering pumps/points of injection: PVC hose 10 x 4 mm
- Sample water connector: PE hose 8 x 5 mm.
- Digital pause input
- 3 contact inputs, freely configurable (option A)
- 5 contact inputs, freely configurable (option F)
- CAN bus for connection of chlorine measuring cells and metering pumps Beta® and DULCO®flex DF4a
- Temperature measuring input Pt 100/Pt 1000
- 3 output relay outputs, freely configurable
- 3 relay outputs for the control of metering pumps (option A)
- 6 output relay outputs, freely configurable (option F)
- 4 analogue outputs 0/4-20 mA, freely configurable (option A)
- 2 analogue outputs 0/4-20 mA, freely configurable (option F)
- Electrical connection: 230 V AC, 50/60 Hz.
- Dimensions with metering pumps alpha, Beta® or DULCO®flex DF4a and/or with "flocculant metering" option:
 - 595 x 745 x 150 mm (W x H x D) mounting plate for measuring technology
 - 595 x 400 x 150 mm (W x H x D) mounting plate for pumps
- Dimensions with metering pumps DULCO®flex DF2a: 595 x 745 x 150 mm (W x H x D)
- Weight: approx. 12 kg or 7 kg (without pumps)

Measuring Control and Metering Systems for Swimming Pool Water Treatment

Metering System DULCODOS® Pool Professional

Field of application

- High-end private pool
- Public swimming pool
- Therapy pool

Туре	рН	ORP	Measured variables: Chlorine	Chlorine/isocyanuric acid	Combined chlorine
PC5	x	х			
PC6	х		Х		
PC7	x	Х	Х		
PC8	х	Х	Х		Х
PC9	х			X	
PCA	х	Х		Х	
PCD	x	Х		X	X

Type PC5: pH and CRP potential (chlorine metering)

Type PC6: pH and free chlorine

Type PC7: pH, CRP potential and free chlorine

Type PC8: pH, CRP potential, free chlorine and combined chlorine

Type PC9: pH and free chlorine in the presence of the stabiliser isocyanuric acid

Type PCA: pH, CRP potential and free chlorine in the presence of the stabiliser isocyanuric acid

Type PCD: pH, CRP potential, free chlorine in the presence of the stabiliser isocyanuric acid and combined

4.4 Metering System DULCODOS® Pool Professional

Identity Code Ordering System for DULCODOS® Pool Professional

Measu PC5	pH/0	ORP														
PC6	1.	ree chl		•				,								
PC7		ORP / fi			•					01 = -						
PC8 PC9		ORP / fi otal chl					,		ensors (ULE 3.	I-CAN	and C [E	1-CAN)			
PC9 PCA	1'	otal chi DRP / to		,				,	(IAA							
PCD										CGE 2	-CAN a	nd CTE	1-CAN)			
		ware-a					,,,,,,,									
	0	Stand	ard			-										
	A			•			20 mA	meası	ıred va	lue						
	F				`	odule)	_									
						nction meas		lata ha	ckun in	cludin	g SD ca	rd				
		1 1				interfa		uiu bu	ortup iii	olaalii	g OB 00					
			0	none												
			5			web se	,									
			6					l web s	erver +	KNX	tunction	+ alarm	by text or	e-mail		
				Elect A		onned		Lirono	an stan	idard r	dua					
				В		/, 50/6 /, 50/6				ισαι σ μ	nug					
						or equ			-9							
					0	with s	ensors	3					G		red variable PC8 without sensors	
					A						sensors		H		red variable PC9 without sensors	
					E						sensors		L		red variable PCA without sensors red variable PCD without sensors	
						Versi		anable	FC/ W	illiout	Sensors)	L	ivieasui	red variable PCD without sensors	
						0		ProMin	ent® lo	go						
						1			Minent [©]	® Logo						
							_	juage							15.00	
							D E	Germ			F	French Italian		P S	Polish Spanish	
							_			ımne	' for acid	is/alkali	e	١٩	Spanish	
								0			ering pu		_			
								1	0.8 l/h	ı (DUL	CO®fle:	x DF2a 0				
								2		1.6 l/h (DULCO®flex DF2a 0216) 2,4 l/h (DULCO®flex DF2a 0224)						
								3		•			,			
								5		٠.		1002 PV 1004 PV	,			
									A B					., 4a 0401 F	VT)	
										2.8 l/h	I/h (Beta [®] CANopen BT4a 0402 PVT) I/h (Beta [®] CANopen BT4a 0405 PVT)					
				ł			C D E F			•		•				
										•			14015 CA 13060 CA	,		
										,			4a 0408 F	,		
													cid/alkal			
									0	witho						
										•	•	pha and E				
								1		Mete	ring pu	mps for	disinfec	tion		
										0			ng pumps ®flex DF2	a for up t	to 45/10 m³/h circulation HB/FB*	
										2					to 90/20 m ³ /h circulation HB/FB*	
										3	2.4 l/h	DULCO	®flex DF2	a for up t	to 140/30 m ³ /h circulation HB/FB*	
										4					h circulation HB/FB*	
								1		5		•			h circulation HB/FB*	
								1		A B					85/20 m ³ /h circulation HB/FB* 160/35 m ³ /h circulation HB/FB*	
								1		С					300/65 m ³ /h circulation HB/FB*	
								1		D					pen for up to 85/20 m³/h circulation HB/F	
								1		E					pen for up to 340/70 m ³ /h circulation HB/	
										F			· ·	· ·	o 1050/225 m ³ /h circulation HB/FB*	
											Multife 0	unctional without	al valve f	or disinf	fection pump	
											1		V (only f	or alpha a	and Beta [®])	
											'	Installa		aipiia c		
												0		d loose w	vithout mounting plate	
												1	assemb	led on a	base plate	
												С			flocculant pump DF4a fitted	
													Approv 0		E certification	
													U	WILLICE	_ Gerunicanon	

^{*} Calculated for 12% sodium-calcium hypochlorite

HB = Indoor swimming pool FB = Outdoor swimming pool

Measuring Control and Metering Systems for Swimming Pool Water Treatment

4.5 Maintenance Kits

The following are needed for the maintenance of a measuring, control and metering system DULCODOS® Pool:

- 2 pc. maintenance kits for metering pumps
- 1 pc. maintenance kit for the measured variable

4.5.1 Maintenance Kits for Metering Pumps

The following table shows the assignment of the maintenance kits to the types of metering pumps used.

	Product range	Туре	Order no.
Hose, complete 4.8 x 8.0 PharMed	DF2a	0208, 0216, 0224	1009480
Hose, complete 1.6 x 4.8 PharMed	DF4a	04015	1030722
Hose, complete 3.2 x 6.4 PharMed	DF4a	03060	1030723
Spare parts kit 1005-2/1605-2 PVT	ALPc, BT4a	1002PVT/ 1004PVT (ALPc), 0405PVT (BT4a)	1023110
Spare parts kits 1601 – 2 PVT, PPT, NPT	BT4a, BT4b	0401PVT (BT4a), 0401PVT (BT4b)	1023108
Spare parts kits 1602 – 2 PVT, PPT, NPT	BT4a, BT4b	0402PVT (BT4a), 0402PVT (BT4b)	1023109
Spare parts kits 0708 – 2/1008 – 2 PVT, PPT, NPT	BT4a	0408PVT	1023111
Spare parts kit 9.2/33.5/12 x 9 PVT	BT4a	0220PVT	1023113
Spare parts kits 1604 - 2 PVT, PPT, NPT	BT4b	0404PVT	1035332

4.5.2 Maintenance Kits for Measured Variables

The following table shows the assignment of the maintenance kits to the types of DULCODOS® Pool.

Maintenance kits are put together for the measured variables of the DSPa. Depending on the measured variable, the maintenance kits consist of:

- Buffer solutions
- Electrolytes
- Diaphragm caps
- 1 stainless steel screen 300 μm for the water filter
- 1 NBR flat seal for the water filter

	Туре	Order no.
DSPA maintenance kit PR0, PC5, 333, 335, 735, 736	Basic, Professional PC5	1050631
DSPA maintenance kit DO2	Soft	1050632
DSPA maintenance kit DC2, PC6, 640, 645, 745	Comfort DC2, Professional PC6	1050633
DSPA maintenance kit DC4, PC9	Comfort DC4, Professional PC9	1050644
DSPA maintenance kit PC7, PCB, 781, 785, 786	Professional PC7	1050645
DSPA maintenance kit PC8	Professional PC8	1050646
DSPA maintenance kit PCA	Professional PCA	1050647
DSPA maintenance kit PCD	Professional PCD	1050648

4.5.3 Buffer Solutions

Quality buffer solutions are provided for calibration of pH and ORP sensors.

The following table shows the assignment of the buffer solutions to the sensors.

	Measured variable	Order no.
Buffer solution pH 4, 50 ml, red	рН	506251
Buffer solution pH 7, 50 ml, green	рН	506253
Buffer solution ORP 465 mV, 50 ml	ORP	506240

Measuring Control and Metering Systems for Swimming Pool Water Treatment

4.6 Test Equipment

4.6.1

Portable Meter Portamess® – Measured Variable pH/ORP

Robust manual measuring instrument to withstand the most severe mechanical and chemical loading.

Measuring range pH -2.00 to + 16.00, ORP -1,300 ... +1,300 mV

pH and ORP measurement with Portamess® pH/ORP - battery-powered, hand-held meter with automatic or manual temperature compensation.

The Portamess® pH/ORP is used to measure the pH and ORP value in the industrial, environmental, food and waste water sectors. The unit complies with the requirements of the EMC Act and the NAMUR NE 21 recommendations. Calibration can be done with buffer solutions made of different, pre-selectable buffer sets.

Your benefits

- Robust and protected against ingress (IP 66 protection)
- Long lifespan: Over 2,000 h operating time with only 3 x AA batteries
- Always in sight: Large LC display
- Hard-wearing membrane keypad
- Integrated sensor quiver to protect the sensor
- Robust, watertight, gold-plated sockets

Technical Details

- Measuring ranges pH: -2.00 ... +16.00, ORP: -1,300 ... +1,300 mV
- Measuring errors pH: < 0.01, ORP: < 0.1% of the measured value ±0.3 mV
- Sensor adaptation: 8 buffer sets to choose from
- Temperature compensation: manual
- Protection class: IP 66
- Operating time: 2,000 hours with 3 x AA cells
- **Dimensions:** H x W x D 160 x 133 x 30
- Weight: 560 g with batteries
- Scope of delivery: Measuring instrument, field case, operating instructions in German, English and

Field of application

- Industry
- Environmental protection
- Food production
- Water or waste water inspection

	Order no.
Portamess® 911 pH	1008710

Accessories

	Capacity	Order no.
	ml	
PHEKT-014F	_	1036537
Coaxial cable Ø 5 mm, 0.8 m - SD*	-	305098
Buffer pH 7.0	50	506253
Buffer pH 4.0	50	506251

* Fitting for all ProMinent® pH sensors with SN6 connection

Sensor quiver see p. → 2-98

4.6 Test Equipment

4.6.2

Photometer

Precise measurement results through high-quality interference filters

Photometers measure nearly all disinfectants and the pH value based on the photometric principle. They are portable, compact and make safe, simple measurement possible.

P DT 0074 SW Photometer

The Photometers DT1B, DT2C, DT3B and DT4B are used, among other things, as a reference method for calibrating the electrochemical sensors for chlorine, chlorine dioxide, fluoride, chlorite, H_2O_2 , bromine and ozone. They have been adapted to today's requirements and can be used in almost all areas of water analysis. High-quality interference filters and long-term stable LEDs are used as the light source in the highprecision optics. The entire measuring unit is maintenance-free. Precise and reproducible analysis results are achieved with minimum time and effort. The units are winning customers over with their excellent operating convenience, ergonomic design, compact dimensions and ease of use.

Your benefits

- Portable and compact
- Simple to operate with text support
- Safe, simple measurement of chlorine, chlorine dioxide, fluoride, chlorite, H₂O₂, bromine, ozone, pH and trichloroisocyanuric acid
- Can be calibrated
- Memory function for the last measurements
- Backlit display
- Real-time clock
- Countdown
- Watertight, degree of protection IP 68

Technical Details

Measuring ranges of the DT1B:

- 0.05 ... 6.0 mg/l free chlorine (DPD1) + total chlorine (DPD1+3)
- 5 ... 200 mg/l free chlorine (high range)
- 0.1 ... 13.0 mg/l bromine (DPD1)
- 0.05 ... 11 mg/l chlorine dioxide (DPD1)
- 0.03 ... 4.0 mg/l ozone (DPD4)
- 6.5 ... 8.4 pH (phenol red)
- 1 ... 80 mg/l cyanuric acid

Measuring ranges of the DT2C:

- 0.05 ... 2.0 mg/l fluoride
- 0.05... 6.0 mg/l free chlorine and total chlorine
- 0.05 ... 11.0 mg/l chlorine dioxide

Measuring ranges of the DT3B:

1 ... 50 / 40 ... 500 mg/l hydrogen peroxide (H₂O₂)

Measuring ranges of the DT4B:

- 0.03 ... 2.5 mg/l chlorite
- 0.05 ... 11 mg/l chlorine dioxide
- 0.05 ... 6 mg/l chlorine

Measuring tolerance: Depending on the measured value and measuring method

Battery: 4 x AA/LR6 batteries

Permissible ambient temperature range: 5...40 °C

Relative humidity: 30 ... 90% (non-condensing)

Protection class: IP 68 Housing material: ABS Keypad: Polycarbonate film

Dimensions: 190 x 110 x 55 mm (L x W x H)

Weight: 0.4 kg

Field of application

- Swimming pools
- Potable water
- Process water

Measuring Control and Metering Systems for Swimming Pool Water Treatment

4.6 Test Equipment

	Order no.
Photometer DT1B	1039315
Photometer DT3B hydrogen peroxide	1039317
Photometer DT4B	1039318

Photometers supplied with accessories, container vessels and reagents.

Consumable items

	Order no.
DPD1 tablets, 100 pieces *	1061892
DPD3 tablets, 100 pieces **	1061893
Glycine tablets, 20 pieces	1061944
Phenol red tablets 100 pieces	305532
Cyanuric acid tablets, 100 pieces	1039744
SPADNS reagent, 250 ml for fluoride detection	1010381
Calibration standard fluoride 1 mg/l, for calibration of the photometer during fluoride determination	1010382
3 pieces replacement cuvettes; round cuvettes with lid for DPD, phenol red and cyanuric acid detection (DT1, DT1B, DT4, DT4B, DT2B, DT2C)	1007566
3 pieces replacement cuvettes for fluoride detection (DT2B and DT2C)	1010396
Chlorine dioxide tablets No. 1, 250 no.	1039732
Chlorine dioxide tablets No. 2, 250 no.	1039733
Chlorine HR tablets, 100 pieces	1075056
Acidifying tablets, 100 pieces	1075057

^{*} replaces DPD1 buffer, 15 ml (1002857) and DPD1 reagent, 15 ml (1002858)

Spare parts

Chlorite measurement

	Order no.
Stirrer for purging of chlorine dioxide (DT4)	1022754
3 pieces replacement cuvettes; round cuvettes with lid for DPD, phenol red and cyanuric acid detection (DT1, DT1B, DT4, DT4B, DT2B, DT2C)	1007566

H₂O₂ measurement

	Order no.
Reagent for H ₂ O ₂ (DT3), 15 ml	1023636
Replacement cuvettes, 5 pieces, for H ₂ O ₂ (DT3)	1024072

^{**} replaces DPD3 solution, 15 ml (1002859)

Resistance of Materials Used in Liquid Ends to the Chemicals Most Frequently Used

The data apply to standard conditions (20 °C, 1,013 mbar).

s	=	saturated solution in water
+	=	resistant
+/0	=	largely resistant
0	=	conditionally resistant
-	=	not resistant
n	=	resistance not known
=>	=	see
*	=	for bonded connections, the resistance of the adhesive (e.g. Tangit) is to be considered. (Materials of the types 'o' and '-' are not recommended!)
**	=	does not apply to glass fibre reinforced material

Concentration data are stated in weight percent, relative to aqueous solutions. If percentages are stated for the level of resistance, this level of resistance is only valid up to this concentration.

NOTE

The elastomers **CSM (Hypalon®)** and **IIR (butyl rubber)** used as diaphragm materials in pulsation dampers have properties similar to **EPDM**.

PTFE is resistant to all chemicals in this list.

PTFE filled with carbon,however, is attacked by strong oxidants such as bromine (anhydrous) or concentrated acids (phosphoric acid, sulphuric acid, chromic acid).

The resistance of PVC-U adhesive joints with Tangit deviates from the list below with regard to the following chemicals:

Medium	Concentration range
Sulfochromic acid	\geq 70% H ₂ SO ₄ + 5% K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇
Chromic acid	≥ 10% CrO ₃
Hydrochloric acid	≥ 25% HCl
Hydrogen peroxide	\geq 5% H ₂ O ₂
Hydrofluoric acid	≥ 0% HF

Explanation of abbreviations used as column headings:

PMMA:	Polymethylmethacrylate (Acrylic resistance)		
PVC:	Polyvinylchloride, rigid, (PVC-U) resistance		
PP:	Polypropylene resistance		
PVDF:	Polyvinylidene fluoride		
1.4404:	Stainless steel 1.4404 & 1.4571 resistance		
FKM: Fluorine Rubber (e.g. Viton® A & B) resistance			
EPDM: Ethylene-Propylene-Dien-rubber resistance			
PharMed®:	PharMed® resistance		
PE: Polyethylene resistance			
2.4819: Hastelloy C-276 resistance			
WGK:	Water endangering class		

Viton® is a registered trademark of DuPont Dow Elastomers

Water endangering classes (WGK):

1	=	slightly hazardous to water
2	=	hazardous to water
3	=	severely hazardous to water
(X)	=	no classification. Classification according to conclusion by analogy.
		To be used under reserve.

Safety data sheets

Safety data sheets on our products in a number of different languages are provided on our website.

www.prominent.com/MSDS

The data is taken from relevant manufacturer's documentation and our own tests. Resistance of materials is also dependant on other factors, e.g. operating conditions, conditions of surfaces etc, and so this list must be treated as an initial guide only. It cannot claim to offer any guarantees. It should be taken into consideration in particular that usual dosing media are compounds, and their corrosiveness cannot be deducted simply by adding the corrosiveness of each single component. In such cases the chemical producers' data of the material compatibility are to be considered as a matter of prime importance for the material choice. A safety data sheet does not give this data and therefore cannot take the place of the technical documentation on the application.

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Acetaldehyde	CH ₃ CHO	100%	-	-	0	-	+	-	+/0	-	+	+	2
Acetamide	CH ₃ CONH ₂	s	+	+	+	+	+	0	+	+/0	+	+	1
Acetic Acid	CH ₃ COOH	100%	-	50%	+	+	+	-	0	60%	70%	+	1
Acetic Anhydride	(CH ₃ CO) ₂ O	100%	-	-	0	-	+	-	+/0	+	0	+	1
Acetic Ether => Ethyl Acetate													
Acetone	CH ₃ COCH ₃	100%	-	-	+	-	+	-	+	-	+	+	1
Acetophenone	C ₆ H ₅ COCH ₃	100%	-	n	+	-	+	-	+	n	+	+	
Acetyl Chloride	CH ₃ COCI	100%	-	+	n	-	0	+	-	0	n	+	1
Acetylacetone	CH ₃ COCH ₂ COCH ₃	100%	-	-	+	-	+	-	+	n	+	+	1
Acetylene Dichloride => Dichlore	o Ethylene												
Acetylene Tetrachloride => Tetra	achloro Ethane												
Acrylonitril	CH ₂ =CH-CN	100%	-	-	+	+	+	-	-	-	+	+	3
Adipic Acid	HOOC(CH ₂) ₄ COOH	S	+	+	+	+	+	+	+	+/0	+	+	1
Allyl Alcohol	CH ₂ CHCH ₂ OH	96%	-	0	+	+	+	-	+	0	+	+/0	2
Aluminium Acetate	AI(CH ₃ COO) ₃	s	+	+	+	+	+	+	+	+	+	+/0	1
Aluminium Bromide	AlBr ₃	s	+	+	+	+	n	+	+	+	+	+	2
Aluminium Chloride	AICI ₃	s	+	+	+	+	-	+	+	+	+	+	1
Aluminium Fluoride	AIF ₃	10%	+	+	+	+	-	+	+	+	+	+/0	1
Aluminium Hydroxide	Al(OH) ₃	S	+	+	+	+	+	+	+	+	+	+	1
Aluminium Nitrate	AI(NO ₃) ₃	s	+	+	+	+	+	+	+	+	+	+	1
Aluminium Phosphate	AIPO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Aluminium Sulphate	$Al_2(SO_4)_3$	s	+	+	+	+	+	+	+	+	+	+	1
Ammonium Acetate	CH ₃ COONH ₄	s	+	+/0	+	+	+	+	+	+	+	+	1
Ammonium Bicarbonate	NH ₄ HCO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Ammonium Carbonate	(NH ₄) ₂ CO ₃	40%	+	+	+	+	+	+	+	+	+	+	1
Ammonium Chloride	NH ₄ Cl	S	+	+	+	+	-	+	+	+	+	+/0	1
Ammonium Fluoride	NH ₄ F	s	+	0	+	+	0	+	+	+	+	+	1
Ammonium Hydroxide	"NH₄OH"	30%	+	+	+	+(25°C)		-	+	+	+	+	2
Ammonium Nitrate	NH ₄ NO ₃	S S	+	+	+	+(25 0)	+	+	+	+	+	+	1
Ammonium Oxalate	(COONH ₄) ₂ * H ₂ O	S	+	+	+	+	+	+	+	+	+	+	1
Ammonium Perchlorate	NH ₄ CIO ₄	10%		+	+	+	+	+	+	+	+	+	1
Ammonium Peroxodisulphate	$(NH_4)_2S_2O_8$	S S	+	+	+		5%	+			+	5%	2
·	(NH ₄) ₂ S ₂ O ₈ (NH ₄) ₃ PO ₄		+			+	10%		+	+		10%	1
Ammonium Phosphate		S	+	+	+	+	10%	+	+	+	+	10%	1
Ammonium Sulphate	(NH ₄) ₂ SO ₄	S	+	+	+	+		+	+	+	+		2
Ammonium Sulphide	(NH ₄) ₂ S	S	+	+	+	+	n	+	+	n	+	n	
Ammoniumaluminium Sulphate Amyl Alcohol		S 1000/	+	+	+	+	+	+	+	+	+	+	1
•	C5H ₁₁ OH	100%	+	+	+	+	+	-	+	-	+	+	1
Aniline	C ₆ H ₅ NH ₂	100%	-	-	+	+	+	- 10	+/0	0	+	+	2
Aniline Hydrochloride	C ₆ H ₅ NH ₂ * HCl	S	n	+	+	+	-	+/0	+/0	0	+	+	2
Antimony Trichloride	SbCl ₃	S 100%	+	+	+	+	-	+	+	+	+	n	2
Aqua Regia	3 HCI + HNO ₃	100%	-	+	-	+	-	-	0	-	-	-	2
Arsenic Acid	H ₃ AsO ₄	S	+	+	+	+	+	+	+	0	+	+	3
Barium Carbonate	BaCO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Barium Chloride	BaCl ₂	s	+	+	+	+	-	+	+	+	+	+	1
Barium Hydroxide	Ba(OH) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Barium Nitrate	Ba(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphate	BaSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Barium Sulphide	BaS	S	+	+	+	+	+	+	+	+	+	+	(1)
Benzaldehyde	C ₆ H ₅ CHO	100%	-	-	+	-	+	+	+	-	0	+	1
Benzene	C ₆ H ₆	100%	-	-	0	+	+	0	-	-	0	+	3
Benzene Sulphonic Acid	C ₆ H ₅ SO ₃ H	10%	n	n	+	+	+	+	-	-	n	+	2
Benzoic Acid	C ₆ H ₅ COOH	S	+	+	+	+	+	+	+	+/0	+	+	1
Benzoyl Chloride	C ₆ H ₅ COCI	100%	-	n	0	n	0	+	+	n	0	+	2
Benzyl Alcohol	C ₆ H ₅ CH ₂ OH	100%	-	-	+	+	+	+	-	+	+	+	1
Benzyl Benzoate	C ₆ H ₅ COOC ₇ H ₇	100%	-	-	+	0	+	+	-	-	+	+	2
Benzyl Chloride	C ₆ H ₅ CH ₂ CI	90%	-	n	0	+	+	+	-	-	0	+	2
Bitter Salt => Magnesium Sulpha	ate												
Bleach => Sodium Hypochlorite													
Plus Vitrial -> Conner Culphoto													

Blue Vitriol => Copper Sulphate

Borax => Sodium Tetraborate

Borine	+ + + 0 0 0 0 + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + +	1 1 2 (2) 2 2 2 (3) 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1
Bromine (dry)	0 0 0 + + + + + + + + + + + + + + +	+ n + + + + + + + + + + + + + + + + + +	+ n + + + + + + + + + + + + + +	2 (2) (2) 2 (3) 1 1 1 1 1 2 3 1 1 1 1 1 (1) 1 1 1
Bromine Walter Brow Brow Brow Brow Browne Call-BCI 100%	- 0 0 0 + + + + + + + + + + + + + + + +	nn + + + + + + + + + + + + + + + + + +	n + + + + + + + + + + + + + + + + + + +	(2) 2 2 (3) 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1
Bromo Benzene	0 0 0 + + + + + - 0 n n n + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + +	2 2 2 (3) 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1
Bromochloro Methane CH ₃ BCI 100% - - - + + + - - + Butanediol HOC ₄ H ₃ OP 10% n + + + + 0 + Butanetiol C ₄ H ₃ OP 10% n + + + + 0 + Butanetiol C ₄ H ₃ OP 100% n + + + + 0 + Butanetiol C ₄ H ₃ OP 100% n + + + + 0 + Butanetiol C ₄ H ₃ OP 100% n + + + + 0 + Butyl Acetate C ₇ H ₃ O ₂ 100% n n n + + + 0 + Butyl Acetate C ₇ H ₃ O ₂ 100% n n n n + + + + 0 + Butyl Acetate C ₇ H ₃ OP 100% n n n n + + + + + Butyl Alexate C ₄ H ₃ SH 100% n n n n + + + + + Butyl Alexate C ₄ H ₃ SH 100% n n n n + + + + + Butyl Mercaptane C ₄ H ₃ SH 100% n n n n + + + + + Butyl Mercaptane C ₂ H ₃ CQ 100% n n n n + + + + + Butyl Stearate C ₂₂ H ₃ QQ 100% n n n n + + + + + +	0 0 + + + + + + + + + + + + + + + + + +	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + + +	2 (3) 1 1 1 1 1 2 3 1 1 1 1 1 (1) 1 1 1 1
Bromochlorotrifluoro Ethane HCClBrCF3 100% - 0 + + + 0 + +	0 + + + + + + + + + + + + + + + + + + +	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + + +	(3) 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1
Butanediol	+ + + + + + + + + + + + + + + + + + +	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + + + + + + + + + + + + +	1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1
Butanol	+ + + + + + + + + + + + + + + + + + +	++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + +	1 1 1 1 2 3 1 1 1 1 1 (1) 1
Butyn Acetate	+ + + O N N N N N N N N N N N N N N N N N	++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + +	1 1 1 1 2 3 1 1 1 1 1 (1)
Butyl Acetate	+ O N N N N N N N N N N N N N N N N N	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + +	1 1 2 3 1 1 1 1 1 (1) 1
Butyl Acetate	- + 0 n n n n + + + + + + + + + + + + + +	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + + n + + + + + + +	1 2 3 1 1 1 1 1 1 (1) 1 1 1
$ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	+ 0 n n n n + + + + + + + + + + + + + +	++ + nn ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + + + + + + +	1 2 3 1 1 1 1 1 1 (1) 1 1 1
Butyl Amine	0 n n n + + + + + + + + + +	+ nn + + + + + + + + + + + + + + + + +	+ + + + + + + +	2 3 1 1 1 1 1 (1) 1
Butyl Benzoate	0 n n n + + + + + + + + + +	+ nn + + + + + + + + + + + + + + + + +	+ + + + + + + +	2 3 1 1 1 1 1 (1) 1
Butyl Oleate	n n n + + + + + + + + + + + + + + + + +	n + + + + + + + n +	n + + + + + + +	3 1 1 1 1 1 (1) 1
Butyl Oleate	n n + + + + + + + + + + +	+ + + + + + + n +	+ + + + + + +	1 1 1 1 (1) 1
Butly Stearate	n + + + + + + + + + + + + + + + + + + +	+ + + + + + n + +	+ + + + + +	1 1 1 1 (1) 1
Butyraldehyde	+ + + + + + + + + + + +	+ + + + + + n + +	+ + + + +	1 1 1 (1) 1
Butyric Acid	+ + + + + + + + + + + +	+ + + + + n + +	+ + + +	1 1 (1) 1
Calcium Acetate	+ + + + + + + + + + +	+ + + n + +	+ + +	1 (1) 1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ + + + + + + + + +	+ + + n + +	+ + +	(1) 1
Calcium Carbonate CaCO ₃ s +	+ + + + + + + + +	+ + n + +	+ +	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ + + + + + + +	+ n + +	+	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ + + + +	n + +		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + + +	+	n	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ + + + +	+		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + + +	+		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+			2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+	+		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+	+		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+		(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	+		(1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	+	+	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	+		2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	+		3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	+	+	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	.0.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10%	% +	+	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	+		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	+		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	+		2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+	+		3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	+		(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+	+		2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n	+		2
Chloroform CHCl ₃ 100% 0 + + + - 0	n	+		3
	n	+		1
	-	+		2
Chlorohydrin C ₃ H ₅ OCl 100% - n + - + + o +	+	+	+	3
Chloroprene => Chlorobutadiene				
Chlorosulphonic Acid SO ₂ (OH)Cl 100% - o - +	-	0	5	1
Chrome-alum => Potassium Chrome Sulphate			100/	
Chromic Acid H ₂ CrO ₄ 50% - +* 0 + 10% + - 0	+		10%	3
Chromic-Sulphuric Acid K ₂ CrO ₄ + H ₂ SO ₄ s - +* - + n n n -	-	n		3
Chromium Sulphate	+	+		1
Citric Acid $C_6H_8O_7$ s + + + + + + + + + + + + + + + + + Cobalt Chloride $CoCl_2$ s + + + + + + + + + + + + + + + + + +	+	+		1
-	+	+		2
Copper-II-Acetate	+	+		3
Copper-II-Arsenite Cu ₃ (AsO ₃) ₂ s + + + + + + + + + + + + + + + + + +	+	+		3
Copper-II-Carbonate CuCO ₃ s + + + + + + + + + + + + + + + + + +		+		2
Copper-II-Chloride	+	+		2
Copper-II-Cyanide	+	+		(3)
Copper-II-Fluoride CuF_2 s + + + + + + + + + + + + + + + + + +	+ + + +	+		(2)
Copper-II-Nitrate $Cu(NO_3)_2$ s + + + + + + + +	+ + + + +	+	+/0	2
Copper-II-Sulphate	+ + + + + +		+	2
Cresols C ₆ H ₄ CH ₃ OH 100% o o + + + +	+ + + + +	+		2

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed [®]	PE	2.4819	WPC
Crotonaldehyde	CH ₃ C ₂ H ₂ CHO	100%	n	-	+	+	+	-	+	-	+	+	3
Cubic Nitre => Sodium Nitrate													
Cumene => Isopropyl Benzene													
Cyclo Hexane	C ₆ H ₁₂	100%	+	-	+	+	+	+	-	-	+	0	1
Cyclohexanole	C ₆ H ₁₁ OH	100%	0	+/0	+	+	+	+	- ,	-	+	+	1
Cyclohexanone	C ₆ H ₁₀ O	100%	-	-	+	-	+	-	+/0	-	+	+	1
Cyclohexyl Alcohol => Cyclohex		1000/	_						_	_			0
Cyclohexylamine Decahydronaphthaline	C ₆ H ₁₁ NH ₂	100%	n -	n . /a	n	n	+	-	n -	n -	n	+	2
Decanydronaphtha Decaline => Decahydronaphtha	C ₁₀ H ₁₈	100%	-	+/0	0	+	n	0	-	-	0	+	
Dextrose => Glucose	ierie												
Diacetonalcohol	C ₆ H ₁₂ O ₂	100%	-	-	+	0	+	-	+	-	+	+	1
Dibromoethane	C ₂ H ₄ Br ₂	100%	-	-	n	+	+	+	-	-	-	+	3
Dibutyl Ether	C ₄ H ₉ OC ₄ H ₉	100%	-	-	+	+	+	-	0	-	+	+	2
Dibutyl Phthalate	C ₁₆ H ₂₂ O ₄	100%	-	-	+	+	+	+	+/0	+	0	+	2
Dibutylamine	(C ₄ H ₉) ₂ NH	100%	n	n	+	+	+	-	-	n	+	+	1
Dichloro Acetic Acid	Cl ₂ CHCOOH	100%	-	+	+	+	+	-	+	0	+	+	1
Dichloro Benzene	C ₆ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	-	0	+	2
Dichloro Butan	C ₄ H ₈ Cl ₂	100%	-	-	0	+	+	+	-	-	0	+	3
Dichloro Butene	C ₄ H ₆ Cl ₂	100%	-	-	0	+	+	0	-	-	0	+	3
Dichloro Ethane	C ₂ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	0	-	+	3
Dichloro Ethylene	C ₂ H ₂ Cl ₂	100%	-	-	0	+	+	0	-	0	-	+	2
Dichloro Methane	CH ₂ Cl ₂	100%	-	-	0	0	0	+	-	0	-	+	2
Dichloroisopropyl Ether	(C ₃ H ₆ Cl) ₂ O	100%	-	-	0	n	+	0	0	-	0	+	(2)
Dicyclohexylamine	(C ₆ H ₁₂) ₂ NH	100%	-	-	0	n	+	-	-	-	0	+	2
Diethyleneglycol	C ₄ H ₁₀ O ₃	\$	+	+	+	+	+	+	+	+	+	+	1
Diethyleneglycolethyl Ether	C ₈ H ₁₈ O ₃	100%	n	n	+	+	+	n	+/0	0	+	+	1
Diethylether Diethylether	C ₂ H ₅ OC ₂ H ₅	100%	-	-	0	+	+	-	-	0 +/0	0	+	3
Diglycolic Acid Dihexyl Phthalate	C ₄ H ₆ O ₅ C ₂₀ H ₂₆ O ₄	30% 100%	+	+	+	+	+	+	n n	+/0	+	+	(1)
Diisobutylketone	C ₉ H ₁₈ O	100%	-	-	+	+	+	-	+	-	+	+	1
Di-iso-nonyl Phthalate	C ₂₆ H ₄₂ O ₄	100%	-	-	+	+	+	n	n	+	+	+	1
Diisopropylketone	C ₇ H ₁₄ O	100%	-	-	+	+	+	-	+	-	+	+	1
Dimethyl Carbonate	(CH ₃ O) ₂ CO	100%	n	n	+	+	+	+	_	n	+	+	1
Dimethyl Ketone => Acetone	(- 5-72												
Dimethyl Phthalate	C ₁₀ H ₁₀ O ₄	100%	-	-	+	+	+	-	+/0	+	+	+	1
Dimethylformamide	HCON(CH ₃) ₂	100%	-	-	+	-	+	-	+	+/0	+	+	1
Dimethylhydrazine	H ₂ NN(CH ₃) ₂	100%	n	n	+	n	+	-	+	n	+	+	3
Dioctyl Phthalate	$C_4H_4(COOC_8H_{17})_2$	100%	-	-	+	+	+	-	+/0	+	+	+	1
Dioxane	C ₄ H ₈ O ₂	100%	-	-	0	-	+	-	+/0	-	+	+	1
Disodium Hydrogenphosphate	Na ₂ HPO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Disulfur Acid Oleum													
Disulphur Dichloride	S ₂ Cl ₂	100%	n	n	n	+	n	+	-	-	n	n	
DMF => Dimethylformamide				,									
Engine Oils		100%	n	+/0	+	+	+	+	-	-	+	+	2
Epsom salts => Magnesium Sul		1000/											_
Ethanol Amina	C ₂ H ₅ OH	100%	-	+	+	+	+	-	+	+	+	+	1
Ethanol Amine Ethyl Acetate	HOC ₂ H ₄ NH ₂ CH ₃ COOC ₂ H ₅	100% 100%	0	n -	+ 35%	+	+	-	+/o +/o	o +/o	++	+	1
Ethyl Acrylate	C ₂ H ₃ COOC ₂ H ₅	100%		-	35% +	0	+	-	+/0	+/0	+	+	2
Ethyl Benzene	C ₆ H ₅ -C ₂ H ₅	100%	-	-	0	+	+	0	-	-	0	+	1
Ethyl Benzoate	C ₆ H ₅ COOC ₂ H ₅	100%	n	-	+	0	+	+	-	-	+	+	1
Ethyl Bromide	C ₂ H ₅ Br	100%	-	n	+	+	n	+	-	0	+	+	2
Ethyl Chloroacetate	CICH ₂ COOC ₂ H ₅	100%	-	0	+	+	+	+	-	-	+	+	2
Ethyl Chlorocarbonate	CICO ₂ C ₂ H ₅	100%	n	n	n	n	n	+	-	n	n	n	(2)
Ethyl Cyclopentane	C5H ₄ C ₂ H ₅	100%	+	+	+	+	+	+	-	-	+	+	(1)
Ethylacetoacetate	C ₆ H ₁₀ O ₃	100%	n	-	+	+	+	-	+/0	+/0	+	+	1
Ethylacrylic Acid	C ₄ H ₇ COOH	100%	n	n	+	+	+	n	+/0	n	+	+	(1)
Ethylene Diamine	(CH ₂ NH ₂) ₂	100%	0	0	+	-	0	-	+	n	+	0	2
Ethylene Dibromide => Dibromo													
Ethylene Dichloride => Dichloro	Ethane												
Ethylene Glycol => Glycol													
Ethylenglycol Ethylether	HOC ₂ H ₄ OC ₂ H ₅	100%	n	n	+	+	+	n	+/0	0	+	+	1
Ethylhexanol	C ₈ H ₁₆ O	100%	n	+/0	+	+	+	+	+	-	+	+	2
Fatty Acids	R-COOH	100%	+	+	+	+	+	+	0	0	+	+	1
Ferric Chloride	FeCl ₃	S	+	+	+	+	-	+	+	+	+	+/0	1
Ferric Nitrate	Fe(NO ₃) ₃	S	+	+	+	+	+	+	+	+	+	+	1
Ferric Phosphate	FePO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Ferric Sulphate	$Fe_2(SO_4)_3$	S	+	+	+	+	0	+	+	+	+	+	1

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed [®]	PE	2.4819	WPC
Ferrous Chloride	FeCl ₂	s	+	+	+	+	-	+	+	+	+	+/0	1
Ferrous Sulphate	FeSO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Fixing Salt => Sodium Thiosulph	nate												
Fluoro Benzene	C ₆ H ₅ F	100%	-	-	+	+	+	0	-	-	0	+	2
Fluoroboric Acid	HBF ₄	35%	+	+	+	+	0	+	+	-	+	+	1
Fluorosilicic Acid	H ₂ SiF ₆	100%	+	30%	30%	+	0	+	+	0	40%	+/0	2
Formaldehyde	CH ₂ O	40%	+	+	+	+	+	-	+/0	-	+	+	2
Formalin => Formaldehyde													
Formamide	HCONH ₂	100%	+	-	+	+	+	+	+	n	+	+	1
Formic Acid	НСООН	S	-	+/0	+	+	+	-	-	+/0	+	+	1
Furane	C ₄ H ₄ O	100%	-	-	+	-	+	-	n . /-	-	+	+	3
Furane Aldehyde Furfuryl Alcohol	C ₅ H ₅ O ₂	100%	n -	n -	n +	0	+	- n	+/o +/o	-	n +	n +	2
Gallic Acid	OC ₄ H ₃ CH ₂ OH C ₆ H ₂ (OH) ₃ COOH	5%	+	+	+	0 +	+	n +	+/0	+	+	+	1
Gasoline	C6112(O11)3COO11	100%	-	-	+	+	+	+	-	-	+	+	2
Glauber's Salt => Sodium Sulph	nate	10070			•	•	•	•			•	•	_
Glucose	C ₆ H ₁₂ O ₆	s	+	+	+	+	+	+	+	+	+	+	1
Glycerol	C ₃ H ₅ (OH) ₃	100%	+	+	+	+	+	+	+	+	+	+	1
Glycerol Triacetate	C ₃ H ₅ (CH ₃ COO) ₃	100%	n	n	+	+	+	-	+	n	+	+	1
Glycine	NH ₂ CH ₂ COOH	10%	+	+	+	+	+	+	+	+	+	+	1
Glycol	C ₂ H ₄ (OH) ₂	100%	+	+	+	+	+	+	+	+	+	+	1
Glycolic Acid	CH ₂ OHCOOH	70%	+	37%	+	+	+	+	+	+/o	+	+	1
Gypsum => Calcium Sulphate													
Heptane	C ₇ H ₁₆	100%	+	+	+	+	+	+	-	-	+	+	1
Hexachloroplatinic Acid	H ₂ PtCl ₆	s	n	+	+	+	-	n	+	n	+	-	
Hexanal	C ₅ H ₁₁ CHO	100%	n	n	+	+	+	-	+/0	-	+	+	1
Hexane	C ₆ H ₁₄	100%	+	+	+	+	+	+	-	-	+	+	1
Hexanol	C ₆ H ₁₃ OH	100%	-	-	+	+	+	n	+	0	+	+	1
Hexantriol	C ₆ H ₉ (OH) ₃	100%	n	n	+	+	+	+	+	n	+	+	1
Hexene	C ₆ H ₁₂	100%	n	+	+	+	+	+	-	-	+	+	1
Hydrazine Hydrate	N ₂ H ₄ * H ₂ O	S E00/	+	+	+	+	+	n	+	0	+	+	3
Hydrophoric Acid	HBr HCI	50% 38%	+ 32%	+ *	+	+	-	-	+	-	+	0	1
Hydrochloric Acid Hydrofluoric Acid	HF	80%	32% -	40%*	+ 40%**	+	-	+	0	0	40%	0	1
Hydrogen Cyanide	HCN	50 %	+	+	40%	+	+	+	+	+	+	+/0	3
Hydrogen Peroxide	H ₂ O ₂	90%	40%	40%*	30%	+	+	30%	30%	+	+	+	1
Hydroiodic Acid	HI	S S	+	+	+	+	-	-	n	-	+	n	1
Hydroquinone	C ₆ H ₄ (OH) ₂	s	0	+	+	+	+	+	-	+/0	+	+	2
Hydroxylamine Sulphate	(NH ₂ OH) ₂ * H ₂ SO ₄	10%	+	+	+	+	+	+	+	+	+	+	2
Hypochlorous Acid	HOCI	s	+	+	0	+	-	+	+/0	+	0	+	(1)
lodine	12	s	0	-	+	+	-	+	+/0	+	0	+/0	
Iron Vitriol => Ferrous Sulphate	_												
Isobutanol => Isobutyl Alcohol													
Isobutyl Alcohol	C ₂ H ₅ CH(OH)CH ₃	100%	-	+	+	+	+	+	+	0	+	+	1
Isopropanol => Isopropyl Alcoho													
Isopropyl Acetate	CH ₃ COOCH(CH ₃) ₂	100%	-	-	+	+	+	-	+/0	+/0	+	+	1
Isopropyl Alcohol	(CH ₃) ₂ CHOH	100%	-	+/0	+	+	+	+	+	0	+	+	1
Isopropyl Benzene	C ₆ H ₅ CH(CH ₃) ₂	100%	-	-	0	+	+	+	-	-	0	+	1
Isopropyl Chloride	CH ₃ CHClCH ₃	80%	-	-	0	+	+	+	-	0	0	+/0	2
Isopropyl Ether	C ₆ H ₁₄ O	100%	-	-	0	+	+	-	-	0	0	+	1
Kitchen Salt => Sodium Chloride													
Lactic Acid	C ₃ H ₆ O ₃	100%	-	+	+	+	+/0	+	10%	+/0	+	+	1
Lead Acetate	Pb(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	2
Lead Nitrate	Pb(NO ₃) ₂	50%	+	+	+	+	+	+	+	+	+	+	2
Lead Sugar => Lead Acetate	DhcO	•											(2)
Lead Sulphate Lead Tetraethyl	PbSO ₄ Pb(C ₂ H ₅) ₄	s 100%	+	+	+	+	+	+	+	+ n	+	+	(2)
Lime Milk => Calcium Hydroxide		100 /6	т	т	т	т	т	т	-	11	т	т	3
Liquid Ammonia => Ammonium													
Lithium Bromide	LiBr	S	+	+	+	+	+	+	+	+	+	+	1
Lithium Chloride	LiCl	s	+	+	+	+	-	+	+	+	+	n	1
Lunar Caustic => Silver Nitrate		•	•							•	•	•	
Magnesium Carbonate	MgCO ₃	S	+	+	+	+	+	+	+	+	+	+/0	1
Magnesium Chloride	MgCl ₂	s	+	+	+	+	0	+	+	+	+	+	1
Magnesium Hydroxide	Mg(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Magnesium Nitrate	$Mg(NO_3)_2$	s	+	+	+	+	+	+	+	+	+	+	1
Magnesium Sulphate	MgSO ₄	S	+	+	+	+	+	+	+	+	+	+/0	1
Maleic Acid	C ₄ H ₄ O ₄	S	+	+	+	+	+	+	+	0	+	+	1
Malic Acid	C ₄ H ₆ O ₅	s	+	+	+	+	+	+	+	+	+	+	1

1.1.2018 5

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed [®]	PE	2.4819	WPC
Manganese-II-Chloride	MnCl ₂	s	+	+	+	+	-	+	+	+	+	+	1
Manganese-II-Sulphate	MnSO ₄	s	+	+	+	+	+	+	+	+	+	+	1
MEK => Methyl Ethyl Ketone													
Mercury	Hg	100%	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Chloride	HgCl ₂	s	+	+	+	+	-	+	+	+	+	+	3
Mercury-II-Cyanide	Hg(CN) ₂	s	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Nitrate	Hg(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	3
Mesityl Oxide	C ₆ H ₁₀ O	100%	-	-	n	n	+	-	+/0	-	n	+	1
Methacrylic Acid	C ₃ H ₅ COOH	100%	n	n	+	+	+	0	+/0	+/0	+	+	1
Methanol	CH ₃ OH	100%	-	-	+	+	+	0	+	+/0	+	+	1
Methoxybutanol	CH ₃ O(CH ₂) ₄ OH	100%	-	-	+	+	+	+	0	0	+	+	(1)
Methyl Acetate	CH ₃ COOCH ₃	60%	-	-	+	+	+	-	+/0	+/0	+	+	2
Methyl Represes	C ₂ H ₃ COOCH ₃	100%	-	-	+	+	+	-	+/0	0	+	+	2
Methyl Benzoate Methyl Catechol	C ₆ H ₅ COOCH ₃ C ₆ H ₃ (OH) ₂ CH ₃	100%	+	-	+	0 +	+	+		+0	+	+	(1)
Methyl Cellulose	06113(011)20113	s s	+	+	+	+	+	+	+	+	+	+	1
Methyl Chloroacetate	CICH ₂ COOCH ₃	100%	-	0	+	+	+	0	-	-	+	+	2
Methyl Cyclopentane	C ₅ H ₉ CH ₃	100%	+	+	+	+	+	+	_	-	+	+	(1)
Methyl Dichloroacetate	Cl ₂ CHCOOCH ₃	100%	-	-	+	n	+	-	n	-	+	+	2
Methyl Ethyl Ketone	CH ₃ COC ₂ H ₅	100%	-		+	-	+	-	+	-	+	+	1
Methyl Glycol	C ₃ H ₈ O ₂	100%	+	+	+	+	+	-	+/0	+	+	+	1
Methyl Isobutyl Ketone	CH ₃ COC ₄ H ₉	100%	-	-	+	-	+	-	0	-	+	+	1
Methyl Isopropyl Ketone	CH ₃ COC ₃ H ₇	100%	-	-	+	-	+	-	+/0	-	+	+	1
Methyl Methacrylate	C ₃ H ₅ COOCH ₃	100%	-	-	+	+	+	-	-	-	+	+	1
Methyl Oleate	C ₁₇ H ₃₃ COOCH ₃	100%	n	n	+	+	+	+	+/0	n	+	+	1
Methyl Salicylate	HOC ₆ H ₄ COOCH ₃	100%	-	-	+	+	+	n	+/0	-	+	+	1
Methylacetyl Acetate	C ₅ H ₈ O ₃	100%	-	-	+	+	+	-	+/0	0	+	+	2
Methylamine	CH ₃ NH ₂	32%	+	0	+	0	+	-	+	+	+	+	2
Methylene Chloride => Dichloro	Methane												
Mirabilit => Sodium Sulphate													
Morpholine	C ₄ H ₉ ON	100%	-	-	+	-	+	n	n	-	+	+	2
Muriatic Acid => Hydrochloric Ac	cid												
Natron => Sodium Bicarbonate	(OLL 000) NI												(0)
Nickel-II-Acetate	(CH ₃ COO) ₂ Ni	S	+	+	+	+	+	-	+	+	+	+	(2)
Nickel-II-Chloride	NiCl ₂	S	+	+	+	+	-	+	+	+	+	+	2
Nickel-II-Nitrate Nickel-II-Sulphate	Ni(NO ₃) ₂ NiSO ₄	S	+	+	+	+	+	+	+	+	+	+/o +/o	2
Nitrate of Lime => Calcium Nitrat	· ·	S	+	+	+	+	+	+	+	+	+	+/0	2
Nitric Acid	HNO ₃	99%	10%	10%*	50%	65%	50%	65%	10%	35%	50%	65%	1
Nitro Methane	CH ₃ NO ₂	100%	-	-	+	0	+	-	+/0	-	+	+	2
Nitro Propane	(CH ₃) ₂ CHNO ₂	100%	_		+	n	+	-	+/0	-	+	+	2
Nitro Toluene	C ₆ H ₄ NO ₂ CH ₃	100%	-		+	+	+	0	-	-	+	+	2
Octane	C ₈ H ₁₈	100%	0	+	+	+	+	+		-	+	+	1
Octanol	C ₈ H ₁₇ OH	100%	-	-	+	+	+	+	+	-	+	+	1
Octyl Cresol	C ₁ 5H ₂₄ O	100%	-	-	+	+	+	0	n	-	+	+	(1)
Oil => Engine Oils													
Oleum	H ₂ SO ₄ + SO ₃	s	n	-	-	-	+	+	-	+	-	+	2
Orthophosphoric Acid => Phosp	horic Acid												
Oxalic Acid	(COOH) ₂	s	+	+	+	+	10%	+	+	+/0	+	+/0	1
Pentane	C ₅ H ₁₂	100%	+	+	+	+	+	+	-	-	+	+	1
Pentanol => Amyl Alcohol													
Perchloric Acid	HCIO ₄	70%	n	10%	10%	+	-	+	+/0	+	+	n	1
Perchloroethylene => Tetrachlor													
Perhydrol => Hydrogen Peroxide													
Petroleum Ether	CnH _{2n+2}	100%	+	+/0	+	+	+	+	-	-	+	+	1
Phenole	C ₆ H ₅ OH	100%	-	-	+	+	+	+	-	+	+	+	2
Phenyl Ethyl Ether	C ₆ H ₅ OC ₂ H ₅	100%	-	-	+	n	+	-	-	-	+	+	2
Phenyl Hydrazine	C ₆ H5NHNH ₂	100%	-	-	0	+	+	0	-	-	0	+	2
Phosphoric Acid	H ₃ PO ₄	85%	50%	+	+	+	+	+	+	+	+	+	1
Phosphorous Triphlorida	POCI ₃	100% 100%	-	-	+	+	n	+	+	n ./o	+	+	1
Phosphorous Trichloride Phthalic Acid	PCI ₃ C ₆ H ₄ (COOH) ₂		-	_	+	+	+	0	+	+/0	+	+	1
Picric Acid	$C_6H_4(COOH)_2$ $C_6H_2(NO_3)_3OH$	S	+	+	+	+	+	+	+	+	+	+	2
Piperidine	C ₆ H ₂ (NO ₃) ₃ OH C ₅ H ₁₁ N	s 100%	+	+	+ n	+ n	+	+	+	-	+ n	+	2
Potash Alum => Potassium Alum	0 11	100%	-			11	т		-		11	T	_
Potassium Acetate	CH ₃ COOK	S	+	+	+	+	+	+	+	+	+	+	1
	KAI(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Bicarbonate	KHCO ₃	40%	+	+	+	+	+	+	+	+	+	+/0	1
Potassium Bifluoride	KHF ₂	40 /o S	n	+	+	+	+	+	+	+	+	+/0	1
		_											

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Potassium Bisulphate	KHSO ₄	5%	+	+	+	+	+	+	+	+	+	+	1
Potassium Bitartrate	KC ₄ H ₅ O ₆	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Borate	KBO ₂	s	+	+	+	+	+	+	+	+	+	+	(1)
Potassium Bromate	KBrO ₃	s	+	+	+	+	+	+	+	+	+	+	2
Potassium Bromide	KBr	S	+	+	+	+	10%	+	+	+	+	0.1	1
Potassium Carbonate	K ₂ CO ₃	s	+	+	+	+	+	+	+	55%	+	+	1
Potassium Chlorate	KCIO ₃	s	+	+	+	+	+	+	+	+	+	+	2
Potassium Chloride	KCI	s	+	+	+	+	-	+	+	+	+	+/0	1
Potassium Chromate	K ₂ CrO ₄	10%	+	+	+	+	+	+	+	+	+	+	3
Potassium Chrome Sulphate	KCr(SO ₄) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanate	KOCN	s	+	+	+	+	+	+	+	+	+	+	2
Potassium Cyanide	KCN	s	+	+	+	+	5%	+	+	+	+	5%	3
Potassium Cyanoferrate II	K ₄ Fe(CN) ₆	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanoferrate III	K ₃ Fe(CN) ₆	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Dichromate	K ₂ Cr ₂ O ₇	S	+	+	+	+	25%	+	+	+	+	10%	3
Potassium Fluoride	KF	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Hydroxyde	KOH	50%	+	+	+	+ (25 °C)	+	-	+	10%	+	+	1
Potassium Iodide	KI	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Nitrate	KNO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Perchlorate	KCIO ₄	s	+	+	+	+	n	+	+	+	+	+	1
Potassium Permanganate	KMnO ₄	s	+	+	+	+	+	+	+	6%	+	+	2
Potassium Persulphate	K ₂ S ₂ O ₈	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Phosphate	KH ₂ PO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Pyrochromate => Po	tassium Dichromate												
Potassium Sulphate	K₂SO₄	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Sulphite	K ₂ SO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Propionic Acid	C ₂ H ₅ COOH	100%	0	+	+	+	+	+	+	+/0	+	+	1
Propionitrile	CH ₃ CH ₂ CN	100%	n	n	+	+	+	+		-	+	+	2
Propyl Acetate	CH ₃ COOC ₃ H ₇	100%	-	-	+	+	+	-	+/0	-	+	+	1
Propylene Glycol	СН3СНОНСН2ОН	100%	+	+	+	+	+	+	+	+	+	+	1
Prussic Acid => Hydrogen Cyar													
Pyridine	C ₅ H ₅ N	100%	-	-	0	-	+	-	-	0	+	+	2
Pyrrole	C ₄ H ₄ NH	100%	n	n	+	n	+	-	-	-	+	+	2
Roman Vitriol => Copper Sulpha	• •												
Salicylic Acid	HOC ₆ H₄COOH	s	+	+	+	+	+	+	+	+	+	+/0	1
Salmiac => Ammonium Chloride	• •												
Saltpeter => Potassium Nitrate													
Silic Acid	SiO ₂ * x H ₂ O	s	+	+	+	+	+	+	+	+	+	+	1
Silver Bromide	AgBr	s	+	+	+	+	+/0	+	+	+	+	+	1
Silver Chloride	AgCl	s	+	+	+	+	-	+	+	+	+	+/0	1
Silver Nitrate	AgNO ₃	s	+	+	+	+	+	+	+	+	+	+/0	3
Slaked Lime => Calcium Hydrox	• 0												
Soda => Sodium Carbonate													
Sodium Acetate	NaCH ₃ COO	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Benzoate	C ₆ H ₅ COONa	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bicarbonate	NaHCO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphate	NaHSO₄	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphite	NaHSO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Borate	NaBO ₂	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Bromate	NaBrO ₃	s	+	+	+	+	+	+	+	+	+	+	3
Sodium Bromide	NaBr	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Carbonate	Na ₂ CO ₃	s	+	+	+	+	+/0	+	+	+	+	+	1
Sodium Chlorate	NaClO ₃	s	+	+	+	+	+	+	+	+	+	+	2
Sodium Chloride	NaCl	s	+	+	+	+	-	+	+	+	+	+	1
Sodium Chlorite	NaClO ₂	24%			+		10%		+	+		10%	2
Sodium Chromate	_		+	+		+		+		+	+		3
Sodium Cyanide	Na ₂ CrO ₄ NaCN	s s	+	+	+	+	+	+	+	+	+	+	3
Sodium Dichromate	Na ₂ Cr ₂ O ₇				+							+	3
Sodium Dichromate Sodium Dithionite	Na ₂ Cr ₂ O ₇ Na ₂ S ₂ O ₄	s s	+	+ 10%	10%	+	+	+ n	+ n	+	+ 10%		1
Sodium Fluoride	Na ₂ S ₂ O ₄												
		S	+	+	+	+	10%	+	+	+	+	+	1
Sodium Hydrogen Sulphate =>	•	E09/				. (600/ /				200/			1
Sodium Hydroxide	NaOH	50%	+	+	+	+ (60%/ 25 °C)		-	+	30%	+	+	1
Sodium Hypochlorite	NaOCI + NaCI	12%	+	+	0	+	-	+	+	+	0	> 10%	2
Sodium Iodide	Nal	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Metaphosphate	(NaPO ₃) _n	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrate	NaNO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrite	NaNO ₂	s	+	+	+	+	+	+	+	+	+	+	2
Sodium Oxalate	$Na_2C_2O_4$	s	+	+	+	+	+	+	+	+	+	+	1

1.1.2018 7

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed [®]	PE	2.4819	WPC
Sodium Perborate	NaBO ₂ *H ₂ O ₂	s	+	+/0	+	+	+	+	+	+	+	+/0	1
Sodium Perchlorate	NaClO ₄	s	+	+	+	+	10%	+	+	+	+	10%	1
Sodium Peroxide	Na ₂ O ₂	s	+	+	+	+	+	+	+	n	-	+	1
Sodium Persulphate	Na ₂ S ₂ O ₈	s	n	+	+	+	+	+	+	+	+	+	1
Sodium Pyrosulphite	Na ₂ S ₂ O ₅	S	+	+	+	+	+	n	n	+	+	+	1
Sodium Salicylate	C ₆ H ₄ (OH)COONa	s	+	+/0	+	+	+	+	+	+	+	+	1
Sodium Silicate	Na ₂ SiO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphate	Na ₂ SO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphide	Na ₂ S	s	+	+	+	+	+	+	+	+	+	+	2
Sodium Sulphite	Na ₂ SO ₃	s	+	+	+	+	50%	+	+	+	+	50%	1
Sodium Tetraborate	Na ₂ B ₄ O ₇ * 10 H ₂ O	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Thiosulphate	$Na_2S_2O_3$	s	+	+	+	+	25%	+	+	+	+	25%	1
Sodium Tripolyphosphate	Na ₅ P ₃ O ₁₀	s	+	+	+	+	+	+/0	+	+	+	+	1
Starch	(C ₆ H ₁₀ O ₅) _n	s	+	+	+	+	+	+	n	+	+	+	1
Starch Gum	(- 0 10 - 3/11	S	+	+	+	+	+	+	+	+	+	+	1
Styrene	C ₆ H ₅ CHCH ₂	100%	-	-	0	+	+	0	-	-	0	+	2
Sublimate => Mercury-II-Chlorid													
Succinic Acid	C ₄ H ₆ O ₄	s	+	+	+	+	+	+	+	+	+	+	1
Sugar Syrup	- 4* -0 = 4	s	+	+	+	+	+	+	+	+	+	+	1
Sulphur Chloride => Disulphur D	ichloride	-										•	
Sulphuric Acid	H ₂ SO ₄	98%	30%	50%	85%	+	20%	+	+	30%	80%	+	1
Sulphuric Acid, fuming> Oleur	2 7	50,0	50,0	5576	0070		_0 /0				5575		
Sulphurous Acid	H ₂ SO ₃	s	+	+	+	+	10%	+	+	+	+	+	(1)
Sulphuryl Chloride	SO ₂ Cl ₂	100%	-		-	0	n	+	0	-		n	1
Tannic Acid	C ₇₆ H ₅₂ O ₄₆	50%	+	+	+	+	+	+	+	+	+	+	1
Tartaric Acid	C ₄ H ₆ O ₆	S S	50%	+	+	+	+	+	+/0	+	+	+	1
Tetrachloro Ethane	C ₂ H ₂ Cl ₄	100%	-	-	0				-	0		+	3
Tetrachloro Ethylene		100%		-	0	+	+	0	-		0		3
•	C ₂ Cl ₄	100%	-	_	U	+	+	0	_	0	0	+	J
Tetrachloromethane => Carbon		100%				_		_	_	_			-
Tetrahydro Furane	C ₄ H ₈ O		-	_	0		+		_	-	0	+	1
Tetrahydro Naphthalene	C ₁₀ H ₁₂	100%	-	-	-	+	+	+	-	-	0	+	3
Tetralin => Tetrahydro Naphthal	ene												
THF => Tetrahydrofurane	000	1000/											
Thionyl Chloride	SOCI ₂	100%	-	-	-	+	n	+	+	+	-	n	1
Thiophene	C ₄ H ₄ S	100%	n	-	0	n	+	-	-	-	0	+	3
Tin-II-Chloride	SnCl ₂	S	+	0	+	+	-	+	+	+	+	+/0	1
Tin-II-Sulphate	SnSO ₄	S	n	+	+	+	+	+	+	+	+	+/0	(1)
Tin-IV-Chloride	SnCl ₄	S	n	+	+	+	-	+	+	+	+	+	1
Titanium Tetrachloride	TiCl ₄	100%	n	n	n	+	n	0	-	n	n	n	1
Toluene	C ₆ H ₅ CH ₃	100%	-	-	0	+	+	0	-	-	0	+	2
Toluene Diisocyanate	C ₇ H ₃ (NCO) ₂	100%	n	n	+	+	+	-	+/0	n	+	+	2
Tributyl Phosphate	$(C_4H_9)_3PO_4$	100%	n	-	+	+	+	-	+	+	+	+	1
Trichloro Ethane	CCI ₃ CH ₃	100%	-	-	0	+	+	+	-	0	0	+	3
Trichloro Ethylene	C ₂ HCl ₃	100%	-	-	0	+	+/0	0	-	0	0	+	3
Trichloro Methane => Chloroforr	n												
Trichloroacetaldehyde Hydrate		S	-	-	0	-	+	0	0	n	+	+	2
Trichloroacetic Acid	CCI3COOH	50%	-	+	+	+	-	-	0	+/0	+	+	1
Tricresyl Phosphate	$(C_7H_7)_3PO_4$	90%	-	-	+	n	+	0	+	+	+	+	2
Triethanol Amine	$N(C_2H_4OH)_3$	100%	+	0	+	n	+	-	+/0	0	+	+	1
Trilene => Trichloro Ethane													
Trioctyl Phosphate	(C ₈ H ₁₇) ₃ PO ₄	100%	n	-	+	+	+	0	+	+	+	+	2
Trisodium Phosphate	Na ₃ PO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Urea	CO(NH ₂) ₂	s	+	+/0	+	+	+	+	+	20%	+	+	1
Vinyl Acetate	CH ₂ =CHOOCCH ₃	100%	-		+	+	+	n	n	+/0	+	+	2
Water Glass => Sodium Silicate													
Xylene	C ₆ H ₄ (CH ₃) ₂	100%	-			+	+	0	-	-	0	+	2
Zinc Acetate	(CH ₃ COO) ₂ Zn	s	+	+	+	+	+	-	+	+	+	+	1
											_		
Zinc Chloride	ZnCl ₂	s	+	+	+	+	-	+	+	+	+	n	1

Chlorine dioxide is capable of penetrating through PVDF without destroying it. This can lead to damage to PVDF-coated parts.

8 1.1.2018

Overview of the Resistance of Soft PVC Hoses (Guttasyn®) to the Most Common Chemicals

This data applies to standard conditions (20 °C, 1013 mbar).

+ = resistant
o = conditionally resistant
- = not resistant

The data is taken from relevant manufacturers' literature and supplemented by our own tests and experience. As the resistance of a material also depends on other factors, especially pressure and operating conditions etc, this list should merely be regarded as an initial guide and does not claim to offer any guarantees. Take into consideration the fact that conventional dosing agents are largely compounds, the corrosiveness of which cannot simply be calculated by adding together the corrosiveness of each individual component. In cases such as these the material compatibility data produced by the chemical manufacturer must be read as a matter of priority when selecting a material. Safety data sheets do not provide this information and cannot therefore replace application-specific documentation.

Corrosive agent	Concentration in %	Evaluation
Acetone	all	-
Acetylene tetrabromide	100	-
Alums of all kinds, aqueous	all	+
Aluminium salts, aqueous	all	+
Ammonium, aqueous	15	-
Ammonium, aqueous	saturated	-
Ammonium salts	all	+
Aniline	100	-
Benzene	100	-
Bisulphite, aqueous	40	+
Borax solution	all	+
Boric acid, aqueous	10	+
Bromine, vaporous and liquid		-
Hydrogen bromide	10	+
Butanol	100	+
Butyric acid, aqueous	20	+
Butyric acid, aqueous	conc.	-
Butyl acetate	100	-
Calcium chloride, aqueous	all	+
Chlorinated hydrocarbons	all	-
Chrome-alum, aqueous	all	+
Chromic acid, aqueous	50	-
Dextrin, aqueous	saturated	+
Diesel oils, compressed oils	100	0
Diethyl ether	100	-
Fertilizing manure salt, aqueous	all	+
Ferric chloride, aqueous	all	+
Glacial acetic acid	100	- -
Acetic ester	100	-
Acetic acid, aqueous	10	+
Acetic acid	50	0
Acetic acid (wine vinegar)		0
Acetic acid anhydride	100	-
Ethanol	96	-
Ethyl acetate	100	-
Ethylene glycol	30	+
Formaldehyde, aqueous	30	0
Difluorodichloromethane	100	-
Glycerol	100	
Glucose, aqueous	saturated	+
Halogens	all	-
<u> </u>	all	
Urea, aqueous Caustic potash	15	+
•		
Potassium bichromate, aqueous	saturated	+
Potassium persulphate, aqueous	saturated	+

Corrosive agent	Concentration in %	Evaluation
Creosote		-
Sodium chloride, aqueous	all	+
Carbonic acid	all	+
Copper sulphate, aqueous	all	+
Magnesium salts, aqueous	all	+
Methyl alcohol	100	+
Methylene chloride	100	-
Sodium hypochlorite	15	+
Sodium salts => sodium chloride		
Sodium hydroxide	aqueous	+
Oils => fats, diesel oil, Lubricating oil and similar		
Perchloric acid	all	0
Phenol, aqueous	all	0
Phosphoric acid, aqueous	100	-
Nitric acid, aqueous	25	+
Hydrochloric acid	15	+
Sulphur dioxide, gaseous	all	+
Carbon disulphide	100	-
Sulphuric acid	30	+
Hydrogen sulphide, gaseous	100	-
Silver nitrate	10	+
Tetrachloromethane	100	-
Ink		+
Toluene	100	-
Trichloroethylene	100	-
Hydrogen peroxide	to 10	+
Xylene	100	-
Zinc salts	all	+

10 1.1.2018

Product catalogue 2018

Order your personal copy. How you want it, when you want it.

Groundbreaking diversity: ProMinent 2018.

Our product catalogue is available in four individual volumes. We are offering you the following options so that you can request your catalogue of choice.

Metering pumps, components and metering systems

Motor-driven and process metering pumps for all capacity ranges

Measuring, control and sensor technology

Water treatment and water disinfection

You can find the ProMinent app for iPads in the iTunes App Store. www.prominent.com/app

You can find our individual catalogue volumes for download or online browsing at www.prominent.com/en/product-catalogue

Or request your own printed copy directly from us at www.prominent.com/en/catalogue-request

Do you need an overview of our entire product range? Then we would recommend our product overview. www.prominent.com/en/productoverview

- официальный представитель и сервисный партнер

www.promhimtech.ru zakaz@promhimtech.ru

тел. 8 800 250 01 54